共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Jiang S Wu X Yan Y Xu J Shao B Zhuang X Han Y Gu X 《Journal of molecular histology》2012,43(2):195-201
Numblike (Numbl) plays an important role in ependymal wall integrity and subventricular zone neuroblast survival. And Numbl
is specifically expressed in the brain. However, its expression and function in the central nervous system lesion are still
unclear. In this study, we performed a traumatic brain injury (TBI) model in adult rats and investigated the dynamic changes
of Numbl expression in the brain cortex. Western blot and immunohistochemistry analysis revealed that Numbl was present in
normal brain. It gradually decreased, reached the lowest point at day 3 after TBI, and then increased during the following
days. Double immunofluorescence staining showed that Numbl immunoreactivity was found in neurons, but not astrocytes and microglia.
Moreover, the 3rd day post injury was the apoptotic peak implied by the alteration of caspase-3. All these results suggested
that Numbl may be involved in the pathophysiology of TBI and further research is needed to have a good understanding of its
function and mechanism. 相似文献
3.
4.
Partial purification of the alpha-tubulin and beta-tubulin messenger RNAs from rat brain 总被引:1,自引:0,他引:1
Poly(A)-containing RNA from frozen adult rat brain were fractionated by centrifugation in a formamide/sucrose gradient. Individual fractions were used to program protein synthesis in vitro in a reticulocyte lysate. The cell-free translation products were analyzed by two-dimensional electrophoresis in polyacrylamide slab gels. We observed a heterodispersion of the mRNA translation activity coding for the beta-tubulin subunit which contrasts with a relatively homogeneous distribution of the alpha-tubulin subunit mRNA. These last mRNA species are present in a peak which sediments near the 18-S region of the gradient whereas the beta-tubulin mRNA activity is predominant in the fractions corresponding to the heaviest mRNA species. When these heaviest RNAs were separated again by centrifugation in a second formamide/sucrose gradient, a poly(A)-rich RNA population was obtained that was enriched in RNA for programming the beta-tubulin subunit. Analysis of the products whose synthesis in vitro was directed by this mRNA population revealed that beta tubulin was the main protein formed, the ratio beta/alpha being more than tenfold greater than in the products translated in vitro using total poly(A)-rich RNA. 相似文献
5.
6.
7.
8.
9.
10.
Correlation between carbohydrate and catecholamine level impairments in methionine sulfoximine epileptogenic rat brain 总被引:1,自引:0,他引:1
This work shows that the convulsant methionine sulfoximine induces an increase in glucose and glycogen levels and a parallel decrease in norepinephrine and dopamine levels in rat brain. Among the epileptogenic agents, methionine sulfoximine is known to have a glycogenic property in the central nervous system. The aim of this work is to look for the neurochemical mechanism underlying this property. For this, catecholamines, glucose, and glycogen were measured at the same time in different areas of the brain in rats submitted to methionine sulfoximine. The convulsant induced an increase in glucose and glycogen levels as previously described and a decrease in dopamine and norepinephrine levels in all the areas of the rat brain. These changes were roughly dose dependent. WhenL-dihydroxyphenylalanine and benserazide (a decarboxylase inhibitor) were administered with methionine sulfoximine, the latter failed to induce seizures in rat up to 8 h after dosing. Moreover, the glucose and glycogen amounts did not increase. In all these experiments, there was an obvious evidence of parallelism between seizures, increase in carbohydrate levels, and decrease in catecholamine levels. These results allow to conclude that the glycogenic property of methionine sulfoximine in the central nervous system probably results from its ability to decrease norepinephrine and dopamine levels. Because the effect of the convulsant on the catecholamine levels persisted for long, it is normal that glucose and glycogen levels increased during preconvulsive, convulsive and postconvulsive period. Methionine sulfoximine is probably glycogenic in rat brain because it decreases catecholamine levels for a long time. 相似文献
11.
In a previous paper (Hiraba and Sato 2004) we reported that an accurate mastication might be executed by the cortical processing in bilateral masticatory area (MA)and motor cortices. The aim of this study was to determine if cats with lesion of either unilateral or bilateral MA showed changes in mastication. After exploring mechanoreceptive fields and motor effects of mastication-related neurons (MRNs) in MA using the single unit recording and intracortical microstimulation methods, we made various lesions in MAs with injections of kainic acid (0.1%, 2.0 microl). Since the MA was divided into facial (F) and intraoral (I) projection areas as reported in the previous paper, cats with the unilateral lesion in F or I, and with the bilateral lesion in F and F, I and I or F and I (F on one side and I on other side) were prepared. Cats with unilateral lesion in F or I and with bilateral lesion in F and I showed no changes in mastication except for prolongation of the food intake and masticatory periods. Cats with bilateral lesion into F and F, or I and I showed wider jaw-opening during mastication. Particularly, the latter group showed enormous jaw-opening, delay in the start of mastication and difficulty in manipulating food on the tongue. In all cats with lesions of each type, masticatory and swallowing rhythms remained normal. These findings suggest that accurate mastication is executed by the close integration between F and F and I and I of the bilateral MA. 相似文献
12.
13.
Intraperitoneal transplantation of human umbilical cord blood (hUCB) cells has been shown to reduce sensorimotor deficits after hypoxic ischemic brain injury in neonatal rats. However, the neuronal correlate of the functional recovery and how such a treatment enforces plastic remodelling at the level of neural processing remains elusive. Here we show by in-vivo recordings that hUCB cells have the capability of ameliorating the injury-related impairment of neural processing in primary somatosensory cortex. Intact cortical processing depends on a delicate balance of inhibitory and excitatory transmission, which is disturbed after injury. We found that the dimensions of cortical maps and receptive fields, which are significantly altered after injury, were largely restored. Additionally, the lesion induced hyperexcitability was no longer observed in hUCB treated animals as indicated by a paired-pulse behaviour resembling that observed in control animals. The beneficial effects on cortical processing were reflected in an almost complete recovery of sensorimotor behaviour. Our results demonstrate that hUCB cells reinstall the way central neurons process information by normalizing inhibitory and excitatory processes. We propose that the intermediate level of cortical processing will become relevant as a new stage to investigate efficacy and mechanisms of cell therapy in the treatment of brain injury. 相似文献
14.
Changes of acetylcholinesterase activity and its molecular forms, extracted by Triton X-100 and separated by polyacrylamide gel electrophoresis, were studied in the rat hippocampus following septal lesions. Detection of acetylcholinesterase was made densitometrically. While the total activity of acetylcholinesterase was decreased, its molecular forms exhibited a different pattern of changes: the heavy forms were decreased, while the light ones were increased. The results support the view that different acetylcholinesterase molecular forms serve different regulatory mechanisms. 相似文献
15.
Dante M. Beltramo Alejandra del C. Alonso Héctor S. Barra 《Molecular and cellular biochemistry》1992,112(2):173-180
The heterogeneity of -tubulin and the relative proportions of the tubulin isotypes were investigated in brain membranes of rats of 1, 25 and 180 days of age by using four anti--tubulin antibodies: a) the monoclonal DM1A antibody, specific for -tubulin; b) the monoclonal 6-11B-1 antibody, specific for acetylated tubulin; c) a polyclonal antibody (Glu antibody), specific for detyrosinated tubulin; and d) a polyclonal antibody (Tyr antibody), specific for tyrosinated tubulin. We found that rat brain membranes contain the three tubulin isotypes mentioned above. The proportions of tyrosinated and detyrosinated tubulin relative to total -tubulin were somewhat lower in membrane than in cytosol in animals of 25 and 180 days of age. At day one of development, the proportions in membrane were similar to those found in cytosol. With respect to the acetylated form, it was about 20 times higher in membrane than in cytosol at the three ages studied. The proportion of acetylated tubulin was determined in different subcellular fractions: myelin, synaptic vesicles, mitochondria, microsomes, and plasma membrane. While the amount of total tubulin differed between the different subcellular fractions, the proportion of acetylated tubulin relative to total -tubulin was constant and similar to that found in total membranes. The proportion of acetylated tubulin was also investigated in non-neural tissues (kidney, liver and lung). Although values for cytosol were about 10-fold higher than that found in brain cytosol, no detectable values for membranes could be obtained in these organs. 相似文献
16.
The development of cortical penicillin foci in the occipital region was studied in rats whose ages ranged from five days up to the adult age. The local application of penicillin induced the formation of an epileptogenic focus for the first time at the age of seven days. With advancing age, the amplitude of focal discharges increased, the duration of the individual components of the discharge shortened, its originally negative-positive configuration changed to a triphasic form and in the third week of life initial positivity, for a time, become the dominant component of the discharge. Projection of the discharges to the contralateral hemisphere was found to be inconstant in the second postnatal week, but appeared regularly from the age of 14 days. Synchronization of the discharges of two symmetrical foci was very poor in 7-day-old young, but improved noticeably by the 14th day; it was never complete, however, even in adulthood. The activity of symmetrical foci changed spontaneously to ECoG seizures, which were most common in 7-day-old young (in which ictal activity was usually not generalized, however) and were least frequent in 14-day-old animals. Focal discharges could not be reliably triggered by electrical stimulation of the contralateral cortex until the age of 18 days and later. The occipital part of the cortex develops somewhat later than the sensorimotor, frontal region, and during its development there also appeared phenomena which are not present in the frontal cortex. 相似文献
17.
18.
19.
20.
I Koyama 《Canadian journal of physiology and pharmacology》1972,50(8):740-752