首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The application of genetic male sterility in hybrid rice production has great potential to revolutionize hybrid seed production methodology. The two-line breeding system by using thermo-sensitive genic male sterility (TGMS) has been discovered and successfully developed as a breeding strategy in rice. One TGMS gene was investigated by a spontaneous rice mutant line, Sokcho-MS, originated from a Korean japonica variety. It was shown that Sokcho-MS is completely sterile at a temperature higher than 27°C and/or lower than 25°C during the development of spikelets, but fertile at the temperature ranging from 25 to 27°C regardless of the levels of day-length. Genetic analysis and molecular mapping based on SSR, STS and EST markers revealed that a single recessive gene locus involved the control of genic male sterility in Sokcho-MS. By using an F2 mapping population derived from a cross between Sokcho-MS and a fertile indica variety Neda, the new TGMS gene, designated as tms6, was mapped primarily to the long arm of chromosome 5 of Oryza sativa at the interval between markers E60663 (2.0 cM) and RM440 (5.8 cM). Subsequently, tms6 was fine mapped to the interval between markers RM3351 (0.1 cM) and E60663 (1.9 cM). As tms6 appeared to be independent of other mapped TGMS genes in rice, the genetic basis of Sokcho-MS was further discussed.  相似文献   

2.
Yang Q  Liang C  Zhuang W  Li J  Deng H  Deng Q  Wang B 《Planta》2007,225(2):321-330
Previous research has demonstrated that the thermo-sensitive genic male-sterile (TGMS) gene in rice was regulated by temperature. TGMS rice is important to hybrid rice production because the application of the TGMS system in two-line breeding is cost-effective, simple, efficient and overcomes the limitations of the cytoplasmic male sterility (CMS) system. AnnongS is the first discovered and deeply studied TGMS rice line in China. Previous studies have suggested that AnnongS-1 and Y58S, two derivative TGMS lines of AnnongS, were both controlled by a single recessive gene named tms5, which was genetically mapped on chromosome 2. In the current study, three populations (AnnongS-1 × Nanjing11, Y58S × Q611, and Y58S × Guanghui122) were developed to investigate the tms5 gene molecular map. Analysis of recombination events of sterile samples, utilizing 125 probes covering the tms5 region, suggested that the tms5 gene was physically mapped to a 19 kb DNA fragment between two markers, 4039-1 and 4039-2, located on the BAC clone AP004039. Following the construction of a physical map between the two markers, ONAC023, a member of the NAC (NAM-ATAF-CUC-related) gene family, was identified as the candidate of the tms5 gene.  相似文献   

3.
AnnongS-1, a thermo-sensitive genic male-sterile (TGMS) rice line, has a new TGMS gene. Genetic analysis indicated that the sterility of AnnongS-1 was controlled by a single resessive gene named tms5. In our previous studies based on an F2 population from the cross between AnnongS-1 and Nanjing11, tms5 was mapped on chromosome 2. Recently, a RIL (recombinant inbred line) population from the same cross was developed and used for the fine mapping of the tms5 gene. Molecular marker techniques combined with BSA (bulked segregant analysis) were used. As a result, two AFLP markers (AF10, AF8), one RAPD marker (RA4), one STS marker (C365-1), one CAPs marker (G227-1) and four SSR markers (RM279, RM492, RM327, RM324) were found to be closely linked to tms5 gene. The DNA sequences of the RFLP marker of C365 and G227 were found in GenBank, and on the basis of these sequences, many primers were designed to amplify the two parents and their RIL population plants. Finally, the tms5 gene was mapped between STS marker C365-1 and CAPs marker G227-1 at a distance of 1.04 cM from C365-1 and 2.08 cM from G227-1.Communicated by H.F. LinskensY.G. Wang and Q.H. Xing contributed equally to this contribution.  相似文献   

4.
The thermo-sensitive genic male sterility (TGMS) lines play a crucial role in two-line hybrid rice production. For a practical TGMS line, the stability of male sterility is one of the most important technical indicators. In this study, XianS, a spontaneous mutant with stable male sterility from an indica rice cultivar Xianhuangzhan, was classified as a non-pollen type TGMS line. The critical non-pollen sterility point temperature of XianS was determined as 27°C. Genetic analysis demonstrated that the non-pollen sterility in XianS was controlled by a single recessive gene. Using SSR markers and bulked segregant analysis, the TGMS gene in XianS was fine mapped to a 183 kb interval between RMAN81 and RMX21 on chromosome 2. Two markers, 4039-1 and RMX14 completely cosegregated with this gene. Allelism test indicated that the non-pollen phenotype in seven non-pollen type TGMS lines from different sources, XianS, AnnongS-1, Q523S, Q524S, N28S, G421S, and Q527S is caused by the same TGMS gene. Although the location of TGMS gene in XianS is close to the gene OsNAC6, a previously identified candidate gene of tms5 in AnnongS-1, the sequence of OsNAC6 and its promoter region was identical in TGMS line XianS, AnnongS-1, and wild-type Xianhuangzhan. These results suggest that the non-pollen type TGMS trait probably be controlled by the same TGMS gene in different TGMS rice lines, but its real candidate gene still need to be further studied and identified.  相似文献   

5.
TGMS (thermo-sensitive genic male-sterile) rice is widely used in hybrid rice production. Because of a specific temperature requirement, it can be used only in a narrow rice-growing zone in Asia. A newly discovered reverse thermo-sensitive genic male-sterile line, J207S, has an opposite phynotype compared to the normal TGMS lines. J207S is completely sterile when the temperature is lower than 31°C. Thus, it can be widely used in a larger area. Genetic analysis indicated that the sterility of J207S was controlled by a single recessive gene which was first named as rtms1. An F2 population from the cross between J207S and E921 was developed and used for molecular mapping of the rtms1 gene. The AFLP (amplified fragment length polymorphism) technique, combined with BSA (bulked segregant analysis), was used to screen markers linked to the target gene, and eight polymorphic AFLP loci were identified. Co-segregating analysis using the F2 population showed that two of them, Rev1 and Rev7, were closely linked to the target gene with a recombinant rate of 3.8% and 7.7%, respectively. Both Rev1 and Rev7 were found to be single-copy sequences through Southern analysis. Rev1 was subsequently mapped on chromosome 10 with a doubled-haploid mapping populations derived from the cross CT9993 × IR62266 available at Texas Tech University. RM222 and RG257 were linked to Rev1 at a distance of 11.8 cM and 4.6 cM, respectively. Additional SSR markers from the rice map of Cornell University, RFLP markers from the map of RGP in Japan and the map of Texas Tech University were selected from the region surrounding Rev1 on chromosome 10 to conduct the fine-mapping of the rtms1 gene. Presently, rtms1 was mapped between RM239 and RG257 with genetic distance of 3.6 cM and 4.0 cM, respectively. The most-closely linked AFLP marker, Rev1, 4.2 cM from the rtms1 gene, was sequenced and converted into a SCAR (sequence characterized amplified region) marker which could facilitate marker-assisted selection of the rtms1 gene. Received: 2 November 2000 / Accepted: 21 November 2000  相似文献   

6.
Yang ZM  Xie XF  Huang XB  Wang FQ  Tong ZJ  Duan YL  Lan T  Wu WR 《遗传》2012,34(5):615-620
"三明显性核不育水稻"突变体是由福建省三明市农业科学研究所于2001年在杂交组合"SE21S/Basmati370"的F2代群体中发现的。其不育性受1个显性基因控制(将该基因命名为SMS)。经过多代回交,该显性不育基因已导入籼稻品种佳福占的遗传背景中(将该不育材料称为佳不育)。为了定位SMS,文章将佳不育与粳稻品种日本晴杂交,并将F1与佳福占测交,构建了一个作图群体。利用SSR和INDEL标记,通过混合分离分析和连锁分析,将SMS定位于第8号染色体上两个INDEL标记ZM30和ZM9之间,约99 kb的区间内。该结果为克隆SMS奠定了基础。  相似文献   

7.
xs1 is a male sterile rice mutant derived from a spontaneous mutation. Pollen development in the xs1 mutant proceeds normally until the vacuolation stage, at which time xs1 pollen fails to vacuolate and no viable pollen is produced. Genetic analysis indicates that the xs1 mutant phenotype is controlled by a single recessive gene, designated vacuolation retardation 1 (vr1), which was mapped to rice chromosome 4. In order to fine-map the vr1 locus, two large mapping populations were generated and several SSR and InDel markers were developed from publicly available rice genomic sequences. By employing a strategy of chromosome-walking, the vr1 gene was finally located within a genetic interval of 0.27 cM, flanked by the markers FID30 and FS15, with distances of 0.11 and 0.16 cM, respectively, and co-segregating with the marker FC4-2. Based on the japonica rice genome sequence, the vr1 locus is estimated to cover a 48-kb region containing eight putative genes. Our results will facilitate the cloning and functional characterization of the vr1 gene.  相似文献   

8.

Key message

A new thermo-sensitive dominant genic male sterility (TSDGMS) line of Brassica napus was found and mapped in this paper. Our result will greatly accelerate the map-based cloning of the BntsMs gene.

Abstract

TE5A is a thermo-sensitive dominant genic male sterility line originating from spontaneous mutation of the inbred line TE5 in Brassica napus and provides a promising system for the development of hybrid cultivars. Genetic analysis has revealed that the BntsMs mutant is controlled by a single, dominant gene. Here, we describe the fine mapping of BntsMs using amplified fragment length polymorphism (AFLP) and intron polymorphism (IP) methodologies. We screened 1,024 primer combinations and then identified five AFLP markers linked to the BntsMs gene, two of which were successfully converted into sequence-characterised amplified region (SCAR) markers. The linkage of the markers was identified by analysing a large BC2 population of 700 recessive-fertility individuals. Two SCAR markers were found in the flanking region of the BntsMs gene at distance of 3.5 and 4.8 cm. Based on sequence information from the previously screened AFLP markers and on genome organisation comparisons of the A genome of Brassica rapa and Arabidopsis, seven IP markers linked to the BntsMs gene were developed. By analysing the 700 recessive-fertility individuals, two IP markers, IP004 and IP470, were localised to the flanking region of the BntsMs gene at a distance of 0.3 and 0.2 cm, respectively. A comparison of the B. rapa and Arabidopsis genomes revealed 27 genes of B. rapa in the flanking region of these two IP markers. It is likely that the molecular markers developed from these investigations will greatly accelerate the positional cloning of the BntsMs gene.  相似文献   

9.
A rice lesion mimic mutant, lm3, was obtained by the mutagenesis of an indica cultivar, 93-11, using γ-ray radiation. Brownish lesions appeared on the leaves of lm3 at the young seedling stage and persisted until the ripening stage. The lm3 mutant was characterised by a shorter plant height and delayed heading compared with the wild-type 93-11. A genetic analysis indicated that the lesion mimic phenotype was controlled by a single recessive gene. Using simple sequence repeat (SSR) markers, the target gene LM3 was first located between marker RM5748 and RM14906 on chromosome 3. We then developed Insertion-Deletion (InDel) markers to fine-map LM3, and the locus was localised to a 29 kb region defined by two InDel markers, In12571 and In12600. Five ORFs were predicted in the candidate region, and DNA sequencing detected a single-nucleotide polymorphism (SNP) in the coding region of LOC Os03g21900. The SNP in the fourth exon (C in 93-11; T in lm3) of LOC_Os03g21900 results in the substitution of a proline (P) with a serine (S) at the 140th amino acid of the deduced uroporphyrinogen decarboxylase protein. We did not detect polymorphisms in the other predicted ORF regions between lm3 and 93-11. These results suggest that LOC_Os03g21900 is the most likely candidate gene for LM3.  相似文献   

10.
<正>Recently,a joint research team led by Chuxiong Zhuang of South China Agricultural University and Xiaofeng Cao of Institute of Genetics and Development Biology,Chinese Academy of Sciences published their work on the cloning and molecular characterization of the gene thermosensitive genic male sterile 5(tms5)in rice in Nature Communications[1].This is the result of a long-term collaboration representing an important advance in male sterility research in crops.  相似文献   

11.
The present study describes a novel thermo-sensitive genic male sterile (TGMS) line, Qiong68ms. To analyse the mode of fertility inheritance and tag the TGMS gene, a set of F2, BC1 and F2:3 populations derived from a cross between Qiong68ms and K12 were evaluated for a period of 2 years. Classical genetic analyses and QTL mapping using the mean restoration percentage of the F2:3 populations revealed that the fertility of Qiong68ms was likely to be governed by a single recessive gene, which was named tms3; the tms3 gene was mapped to a location between SSR markers umc2129 and umc1041, at a distance of 3.7 cM form umc2129 and 1.5 cM form umc1041. The molecular markers tightly linked with tms3 gene will aid in the transfer of the TGMS gene to various background inbred lines using the MAS method.  相似文献   

12.
水稻籼型光温敏核雄性不育性遗传研究   总被引:1,自引:0,他引:1  
1 引  言水稻光温敏核雄性不育性是一种典型的生态遗传现象 ,其遗传行为既受内部基因控制 ,又受外部光、温等生态因子的调节 ,还与所处的遗传背景密切相关 .前人已对农垦 5 8S及其衍生系等粳型光温敏核不育性有过较系统地研究 ,并提出一对、二对、三对和重复基因突变等多种假说[3 ,5,7~ 9] ;但对籼型及非农垦 5 8S基因源的光温敏核不育性研究较少 .本文采用极大似然法 ,对不同来源的籼型光温敏核不育性进行系统研究 ,旨在揭示其遗传本质 ,为解决两系法杂交水稻推广过程中出现的不育起点温度“漂移”等问题提供理论依据 .2 材料与方法…  相似文献   

13.
The discovery and application of the thermosensitive genic male sterility (TGMS) system has great potential for revolutionizing hybrid seed production technology in rice. Use of the TGMS system in two-line breeding is simple, inexpensive, efficient, and eliminates the limitations associated with the cytoplasmic-genetic male sterility (CMS) system. An F2 population developed from a cross between a TGMS indica mutant, TGMS–VN1, and a fertile indica line, CH1, was used to identify molecular markers linked to the TGMS gene and to subsequently determine its chromosomal location on the linkage map of rice. Bulk segregant analysis was performed using the AFLP technique. From the survey of 200 AFLP primer combinations, four AFLP markers (E2/M5–600, E3/M16–400, E5/M12–600, and E5/M12–200) linked to the TGMS gene were identified. All the markers were linked to the gene in the coupling phase. All except E2/M5–200 were found to be low-copy sequences. However, the marker E5/M12–600 showed polymorphism in RFLP analysis and was closely linked to the TGMS gene at a distance of 3.3 cM. This marker was subsequently mapped on chromosome 2 using doubled-haploid mapping populations derived from the crosses IR64×Azucena and CT9993×IR62666, available at IRRI, Philippines, and Texas Tech University, respectively. Linkage of microsatellite marker RM27 with the TGMS gene further confirmed its location on chromosome 2. The closest marker, E5/M12–600, was sequenced so that a PCR marker can be developed for the marker-assisted transfer of this gene to different genetic backgrounds. The new TGMS gene is tentatively designated as tms4(t). Received: 13 July 1999 / Accepted: 27 July 1999  相似文献   

14.
In this study, we describe a novel ecological self-incompatibility (SI) line HE97 in maize. The main environmental factors influencing the inbred line characteristics were identified through field sowing trials during a two-year study period (2001 and 2002). The results showed that daily minimum temperature had the greatest effect on floral morphology and breeding system of the SI line. In staminate floret differentiation, when the daily minimum temperature exceeded 24°C, the line exhibited complete self-compatibility; however SI was observed when the daily minimum temperature was below 20°C. Therefore, we characterized the line as exhibiting thermo-sensitive genic self-incompatibility (TGSI). A set of F2 and F2:3 populations, derived from the inbred lines HE97 and Z58, were evaluated for two years to elucidate the TGSI line patterns of inheritance. Classical genetic analyses and QTL mapping results revealed that HE97 self-incompatibility was governed by a single allele, named here astgsi1. Thetgsi1 gene was mapped to chromosome 2 between SSR markers nc131 and bnlg1633, with a distance of 2.40 cM from nc131 and 2.44 cM from bnlg1633.  相似文献   

15.
雄性不育是指植物雄蕊不能正常生长和产生有活力花粉粒的现象。利用雄性不育突变体开展杂交育种工作,是快速提高作物单产的有效途径。目前,通过杂种制种已大幅度提高了水稻(Oryza sativa L.)、玉米(Zea mays L.)和小麦(Triticum aestivum L.)等作物的产量。大豆(Glycinemax(L.)Merr.)作为自花授粉作物,通过人工去雄生产杂交种子不仅困难而且经济上不可行。由于适用于杂交种生产的不育系资源短缺,目前大豆还没有实现大规模杂种优势利用。因此,快速实现大豆杂种优势利用迫切需要鉴定稳定的大豆雄性不育系统。本文总结了大豆细胞核雄性不育(genic male sterility, GMS)突变体及不育基因研究进展,同时结合拟南芥(Arabidopsis thaliana)、水稻和玉米中已报道的细胞核雄性不育基因,从反向遗传学的角度,为大豆核雄性不育基因的鉴定提供依据。  相似文献   

16.
Photoperiod- and thermo-sensitive genic male sterility (PGMS and TGMS) are the core components for hybrid breeding in crops. Hybrid rice based on the two-line system using PGMS and TGMS lines has been successfully developed and applied widely in agriculture. However, the molecular mechanism underlying the control of PGMS and TGMS remains obscure. In this study, we mapped and cloned a major locus, p/tms12-1 (photo- or thermo-sensitive genic male sterility locus on chromosome 12), which confers PGMS in the japonica rice line Nongken 58S (NK58S) and TGMS in the indica rice line Peiai 64S (PA64S, derived from NK58S). A 2.4-kb DNA fragment containing the wild-type allele P/TMS12-1 was able to restore the pollen fertility of NK58S and PA64S plants in genetic complementation. P/TMS12-1 encodes a unique noncoding RNA, which produces a 21-nucleotide small RNA that we named osa-smR5864w. A substitution of C-to-G in p/tms12-1, the only polymorphism relative to P/TMS12-1, is present in the mutant small RNA, namely osa-smR5864m. Furthermore, overexpression of a 375-bp sequence of P/TMS12-1 in transgenic NK58S and PA64S plants also produced osa-smR5864w and restored pollen fertility. The small RNA was expressed preferentially in young panicles, but its expression was not markedly affected by different day lengths or temperatures. Our results reveal that the point mutation in p/tms12-1, which probably leads to a loss-of-function for osa-smR5864m, constitutes a common cause for PGMS and TGMS in the japonica and indica lines, respectively. Our findings thus suggest that this noncoding small RNA gene is an important regulator of male development controlled by cross-talk between the genetic networks and environmental conditions.  相似文献   

17.
18.
A thermo-sensitive genic male-sterile (TGMS) wheat line ( Triticum aestivum L.) BNY-S was obtained from the spontaneous mutant of BNY-F. Its fertility was decided by the temperature during the differentiation stage of the spikelets. BNY-S was completely sterile when the temperature was lower than 10 degrees C during the differentiation stage of the spikelets, but fertile when the temperature was higher than 10 degrees C. Genetic analysis indicated that the sterility of BNY-S was controlled by a single recessive gene, which was named as wtms1. An F(2) population, consisting of 3,000 individuals from the cross between BNY-S and Lankao 52-24, was used for genetic analysis and statistical analysis of the TGMS and, out of them, 158 sterile and 93 fertile extremes were present for molecular tagging and mapping of the wtms1 gene. SSR (simple sequence repeat) and AFLP (amplified fragment length polymorphism) techniques combined with BSA (bulked segregant analysis) were used to screen markers linked to the target gene. As a result, wtms1 was preliminarily mapped on chromosome 2B according to SSR analysis. In AFLP analysis, 14 polymorphic AFLP loci were identified with a linkage relation to the wtms1 gene. Then linkage analysis using the F(2) population showed that three of them, E: AAG/M: CTA(163), E: AGG/M: CTC(220) and E: ACA/M: CTA(160), were linked to the wtms1 gene relatively close to a genetic distance of 6.9 cM, 6.9 cM and 13.9 cM, respectively. Finally, the wtms1 gene was mapped between the SSR marker Xgwm 374 and the AFLP marker E: AAG/M: CTA(163) with the distance of 4.8 cM and 6.9 cM, respectively. A partial linkage map was constructed according the SSR and AFLP data.  相似文献   

19.
The thermo-sensititve genic male-sterile (TGMS) gene in rice can alter fertility in response to temperature and is useful in the two-line system of hybrid rice production. However, little is known about the TGMS gene at the molecular level. The objective of this study was to identify molecular markers tightly linked with the TGMS gene and to map the gene onto a specific rice chromosome. Bulked segregant analysis of an F2 population from 5460s (a TGMS mutant line) x Hong Wan 52 was used to identify RAPD markers linked to the rice TGMS gene. Four hundred RAPD primers were screened for polymorphisms between the parents and between two bulks representing fertile and sterile plants; of these, 4 primers produced polymorphic products. Most of the polymorphic fragments contained repetitive sequences. Only one singlecopy sequence fragment was found, a 1.2-kb fragment amplified by primer OPB-19 and subsequently named TGMS1.2. TGMS1.2 was mapped on chromosome 8 with a RIL population and confirmed by remapping with a DHL population. Segregation analysis using TGMS1.2 as a probe indicated that TGMS1.2 both consegregated and was lined with the TGMS gene in this population. It is located about 6.7 cM from the TGMS gene. As TGMS1.2 is linked to the TGMS gene, the TGMS gene must be located on chromosome 8.This research was supported by the Rockefeller Foundation and China National High-Tech Research and Development Program. The first author is a Rockefeller Career Fellow at Texas Tech University  相似文献   

20.

Key message

A gene not only control tiller and plant height, but also regulate panicle structure by QTL dissection in rice.

Abstract

An ideal panicle structure is important for improvement of plant architecture and rice yield. In this study, using recombinant inbred lines (RILs) of PA64s and 93-11, we identified a quantitative trait locus (QTL), designated qPPB3 for primary panicle branch number. With a BC3F2 population derived from a backcross between a resequenced RIL carrying PA64s allele and 93-11, qPPB3 was fine mapped to a 34.6-kb genomic region. Gene prediction analysis identified four putative genes, among which Os03g0203200, a previously reported gene for plant height and tiller number, Dwarf 88 (D88)/Dwarf 14 (D14), had three nucleotide substitutions in 93-11 compared with PA64s. The T to G substitution resulted in one amino acid change from valine in 93-11 to glycine in PA64s. Real-time PCR analysis showed expression level of D88 was higher in 93-11 than PA64s. The expression of APO1 and IPA1 increased, while GN1a and DST decreased in 93-11 compared with PA64s. Therefore, D88/D14 is not only a key regulator for branching, but also affects panicle structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号