首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The flavin mononucleotide (FMN) quinones in flavodoxin have two characteristic redox potentials, namely, Em(FMNH./FMNH-) for the one-electron reduction of the protonated FMN (E1) and Em(FMN/FMNH.) for the proton-coupled one-electron reduction (E2). These redox potentials in native and mutant flavodoxins obtained from Clostridium beijerinckii were calculated by considering the protonation states of all titratable sites as well as the energy contributed at the pKa value of FMN during protonation at the N5 nitrogen (pKa(N5)). E1 is sensitive to the subtle differences in the protein environments in the proximity of FMN. The protein dielectric volume that prevents the solvation of charged FMN quinones is responsible for the downshift of 130-160 mV of the E1 values with respect to that in an aqueous solution. The influence of the negatively charged 5'-phosphate group of FMN quinone on E1 could result in a maximum shift of 90 mV. A dramatic difference of 130 mV in the calculated E2 values of FMN quinone of the native and G57T mutant flavodoxins is due to the difference in the pKa(N5) values. This is due to the difference in the influence exerted by the carbonyl group of the protein backbone at residue 57.  相似文献   

2.
The absence of the PsaC subunit in the photosystem I (PSI) complex (native PSI complex) by mutagenesis or chemical manipulation yields a PSI core (P700-F(X) core) that also lacks subunits PsaD and PsaE and the two iron-sulfur clusters F(A) and F(B), which constitute an integral part of PsaC. In this P700-F(X) core, the redox potentials (E(m)) of the two quinones A(1A/B) and the iron-sulfur cluster F(X) as well as the corresponding protonation patterns are investigated by evaluating the electrostatic energies from the solution of the linearized Poisson-Boltzmann equation. The B-side specific Asp-B558 changes its protonation state significantly upon isolating the P700-F(X) core, being mainly protonated in the native PSI complex but ionized in the P700-F(X) core. In the P700-F(X) core, E(m)(A(1A/B)) remains practically unchanged, whereas E(m)(F(X)) is upshifted by 42 mV. With these calculated E(m) values, the electron transfer rate from A(1) to F(X) in the P700-F(X) core is estimated to be slightly faster on the A(1A) side than that of the wild type, which is consistent with kinetic measurements.  相似文献   

3.
Ishikita H  Morra G  Knapp EW 《Biochemistry》2003,42(13):3882-3892
The absolute values of the one-electron redox potentials of the two quinones (Q(A) and Q(B)) in bacterial photosynthetic reaction centers from Rhodobacter sphaeroides were calculated by evaluating the electrostatic energies from the solution of the linearized Poisson-Boltzmann equation at pH 7.0. The redox potential for Q(A) was calculated to be between -173 and -160 mV, which is close to the lowest measured values that are assumed to refer to nonequilibrated protonation patterns in the redox state Q(A)(-). The redox potential of quinone Q(B) is found to be about 160-220 mV larger for the light-exposed than for the dark-adapted structure. These values of the redox potentials are obtained if Asp-L213 is nearly protonated (probability 0.75-1.0) before and after electron transfer from Q(A) to Q(B), while Glu-L212 is partially protonated (probability 0.6) in the initial state Q(A)(-)Q(B)(0) and fully protonated in the final state Q(A)(0)Q(B)(-). Conversely, if the charge state of the quinones is varied from Q(A)(-)Q(B)(0) to Q(A)(0)Q(B)(-) corresponding to the electron transfer from Q(A) to Q(B), Asp-L213 remains protonated, while Glu-L212 changes its protonation state from 0.15 H(+) to fully protonated. In agreement with results from FTIR spectra, there is proton uptake at Glu-L212 going along with the electron transfer, whereas Asp-L213 does not change its protonation state. However, in our simulations Asp-L213 is considered to be protonated rather than ionized as deduced from FTIR spectra. The calculated redox potential of Q(A) shows little dependence on the charge state of Asp-L213, which is due to a strong coupling with the protonation state of Asp-M17 but increases by 50 mV if Glu-L212 changes from the ionized to the protonated charge state. Both are in agreement with fluorescence measurements observing the decay of SP(+)Q(A)(-) in a wide pH regime. The computed difference in redox potential of Q(B) in the light-exposed and dark-adapted structure was traced back to the hydrogen bond of Q(B) with His-L190 that is lost in the dark-adapted structure and the charge of the non-heme iron atom, which is closer to Q(B) in the light-exposed than in the dark-adapted structure.  相似文献   

4.
In bacterial photosynthetic reaction centers (bRC), the electron is transferred from the special pair (P) via accessory bacteriochlorophyll (B(A)), bacteriopheopytin (H(A)), the primary quinone (Q(A)) to the secondary quinone (Q(B)). Although the non-heme iron complex (Fe complex) is located between Q(A) and Q(B), it was generally supposed not to be redox-active. Involvement of the Fe complex in electron transfer (ET) was proposed in recent FTIR studies [A. Remy and K. Gerwert, Coupling of light-induced electron transfer to proton uptake in photosynthesis, Nat. Struct. Biol. 10 (2003) 637-644]. However, other FTIR studies resulted in opposite results [J. Breton, Steady-state FTIR spectra of the photoreduction of Q(A) and Q(B) in Rhodobacter sphaeroides reaction centers provide evidence against the presence of a proposed transient electron acceptor X between the two quinones, Biochemistry 46 (2007) 4459-4465]. In this study, we calculated redox potentials of Q(A/B) (E(m)(Q(A/B))) and the Fe complex (E(m)(Fe)) based on crystal structure of the wild-type bRC (WT-bRC), and we investigated the energetics of the system where the Fe complex is assumed to be involved in the ET. E(m)(Fe) in WT-bRC is much less pH-dependent than that in PSII. In WT-bRC, we observed significant coupling of ET with Glu-L212 protonation upon oxidation of the Fe complex and a dramatic E(m)(Fe) downshift by 230 mV upon formation of Q(A)(-) (but not Q(B)(-)) due to the absence of proton uptake of Glu-L212. Changes in net charges of the His ligands of the Fe complex appear to be the nature of the redox event if we assume the involvement of the Fe complex in the ET.  相似文献   

5.
Quinones are appealing targets as organic charge carriers for aqueous redox flow batteries (RFBs), but their utility continues to be constrained by limited stability under operating conditions. The present study evaluates the stability of a series of water‐soluble quinones, with redox potentials ranging from 605–885 mV versus NHE, under acidic aqueous conditions (1 m H2SO4). Four of the quinones are examined as cathodic electrolytes in an aqueous RFB, paired with anthraquinone‐2,7‐disulfonate as the anodic electrolyte. The RFB data complement other solution stability tests and show that the most stable electrolyte is a tetrasubstituted quinone containing four sulfonated thioether substituents. The results highlight the importance of substituting all C–H positions of the quinone in order to maximize the quinone stability and set the stage for design of improved organic electrolytes for aqueous RFBs.  相似文献   

6.
The photosynthetic reaction center (RC) from Rhodopseudomonas viridis contains four cytochrome c hemes. They establish the initial part of the electron transfer (ET) chain through the RC. Despite their chemical identity, their midpoint potentials cover an interval of 440 mV. The individual heme midpoint potentials determine the ET kinetics and are therefore tuned by specific interactions with the protein environment. Here, we use an electrostatic approach based on the solution of the linearized Poisson-Boltzmann equation to evaluate the determinants of individual heme redox potentials. Our calculated redox potentials agree within 25 meV with the experimentally measured values. The heme redox potentials are mainly governed by solvent accessibility of the hemes and propionic acids, by neutralization of the negative charges at the propionates through either protonation or formation of salt bridges, by interactions with other hemes, and to a lesser extent, with other titratable protein side chains. In contrast to earlier computations on this system, we used quantum chemically derived atomic charges, considered an equilibrium-distributed protonation pattern, and accounted for interdependencies of site-site interactions. We provide values for the working potentials of all hemes as a function of the solution redox potential, which are crucial for calculations of ET rates. We identify residues whose site-directed mutation might significantly influence ET processes in the cytochrome c part of the RC. Redox potentials measured on a previously generated mutant could be reproduced by calculations based on a model structure of the mutant generated from the wild type RC.  相似文献   

7.
Since the higher redox potential of quinone molecules has been correlated with enhanced cellular deleterious effects, we studied the ability of the association of ascorbate with several quinones derivatives (having different redox potentials) to cause cell death in K562 human leukaemia cell line. The rationale is that the reduction of quinone by ascorbate should be dependent of the quinone half-redox potential thus determining if reactive oxygen species (ROS) are formed or not, leading ultimately to cell death or cell survival. Among different ROS that may be formed during redox cycling between ascorbate and the quinone, the use of different antioxidant compounds (mannitol, desferal, N-acetylcysteine, catalase and superoxide dismutase) led to support H2O2 as the main oxidizing agent. We observed that standard redox potentials, oxygen uptake, free ascorbyl radical formation and cell survival were linked. The oxidative stress induced by the mixture of ascorbate and the different quinones decreases cellular contents of ATP and GSH while caspase-3-like activity remains unchanged. Again, we observed that quinones having higher values of half-redox potential provoke a severe depletion of ATP and GSH when they were associated with ascorbate. Such a drop in ATP content may explain the lack of activation of caspase-3. In conclusion, our results indicate that the cytotoxicity of the association quinone/ascorbate on K562 cancer cells may be predicted on the basis of half-redox potentials of quinones.  相似文献   

8.
Ishikita H  Knapp EW 《FEBS letters》2006,580(18):4567-4570
To elucidate the role of the non-heme iron complex (Fe-complex) in the electron transfer (ET) events of bacterial photosynthetic reaction centers (bRC), we calculated redox potentials of primary/secondary quinones Q(A/B) (E(m)(Q(A/B))) in the Fe-depleted bRC. Removing the Fe-complex, the calculated E(m)(Q(A/B)) are downshifted by approximately 220 mV/ approximately 80 mV explaining both the 15-fold decrease in ET rate from bacteriopheophytin (H(A)(-)) to Q(A) and triplet state occurrence in Fe-depleted bRC. The larger downshift in E(m)(Q(A)) relative to E(m)(Q(B)) increases the driving-energy for ET from Q(A) to Q(B) by 140 meV, in agreement with approximately 100 meV increase derived from kinetic studies.  相似文献   

9.
Hiroshi Ishikita 《BBA》2007,1767(11):1300-1309
In bacterial photosynthetic reaction centers (bRC), the electron is transferred from the special pair (P) via accessory bacteriochlorophyll (BA), bacteriopheopytin (HA), the primary quinone (QA) to the secondary quinone (QB). Although the non-heme iron complex (Fe complex) is located between QA and QB, it was generally supposed not to be redox-active. Involvement of the Fe complex in electron transfer (ET) was proposed in recent FTIR studies [A. Remy and K. Gerwert, Coupling of light-induced electron transfer to proton uptake in photosynthesis, Nat. Struct. Biol. 10 (2003) 637-644]. However, other FTIR studies resulted in opposite results [J. Breton, Steady-state FTIR spectra of the photoreduction of QA and QB in Rhodobacter sphaeroides reaction centers provide evidence against the presence of a proposed transient electron acceptor X between the two quinones, Biochemistry 46 (2007) 4459-4465]. In this study, we calculated redox potentials of QA/B (Em(QA/B)) and the Fe complex (Em(Fe)) based on crystal structure of the wild-type bRC (WT-bRC), and we investigated the energetics of the system where the Fe complex is assumed to be involved in the ET. Em(Fe) in WT-bRC is much less pH-dependent than that in PSII. In WT-bRC, we observed significant coupling of ET with Glu-L212 protonation upon oxidation of the Fe complex and a dramatic Em(Fe) downshift by 230 mV upon formation of QA (but not QB) due to the absence of proton uptake of Glu-L212. Changes in net charges of the His ligands of the Fe complex appear to be the nature of the redox event if we assume the involvement of the Fe complex in the ET.  相似文献   

10.
Ishikita H  Knapp EW 《Biochemistry》2005,44(45):14772-14783
In photosystem II (PSII), the redox properties of the non-heme iron complex (Fe complex) are sensitive to the redox state of quinones (Q(A/)(B)), which may relate to the electron/proton transfer. We calculated the redox potentials for one-electron oxidation of the Fe complex in PSII [E(m)(Fe)] based on the reference value E(m)(Fe) = +400 mV at pH 7 in the Q(A)(0)Q(B)(0) state, considering the protein environment in atomic detail and the associated changes in protonation pattern. Our model yields the pH dependence of E(m)(Fe) with -60 mV/pH as observed in experimental redox titration. We observed significant deprotonation at D1-Glu244 in the hydrophilic loop region upon Fe complex oxidation. The calculated pK(a) value for D1-Glu244 depends on the Fe complex redox state, yielding a pK(a) of 7.5 and 5.5 for Fe(2+) and Fe(3+), respectively. To account for the pH dependence of E(m)(Fe), a model involving not only D1-Glu244 but also the other titratable residues (five Glu in the D-de loops and six basic residues near the Fe complex) seems to be needed, implying the existence of a network of residues serving as an internal proton reservoir. Reduction of Q(A/B) yields +302 mV and +268 mV for E(m)(Fe) in the Q(A)(-)Q(B)(0) and Q(A)(0)Q(B)(-) states, respectively. Upon formation of the Q(A)(0)Q(B)(-) state, D1-His252 becomes protonated. Forming Fe(3+)Q(B)H(2) by a proton-coupled electron transfer process from the initial state Fe(2+)Q(B)(-) results in deprotonation of D1-His252. The two EPR signals observed at g = 1.82 and g = 1.9 in the Fe(2+)Q(A)(-) state of PSII may be attributed to D1-His252 with variable and fixed protonation, respectively.  相似文献   

11.
Quinones are naturally occurring isoprenoids that are widely exploited by photosynthetic reaction centers. Protein interactions modify the properties of quinones such that similar quinone species can perform diverse functions in reaction centers. Both type I and type II (oxygenic and nonoxygenic, respectively) reaction centers contain quinone cofactors that serve very different functions as the redox potential of similar quinones can operate at up to 800 mV lower reduction potential when present in type I reaction centers. However, the factors that determine quinone function in energy transduction remain unclear. It is thought that the location of the quinone cofactor, the geometry of its binding site, and the "smart" matrix effects from the surrounding protein environment greatly influence the functional properties of quinones. Photosystem II offers a unique system for the investigation of the factors that influence quinone function in energy transduction. It contains identical plastoquinones in the primary and secondary quinone acceptor sites, Q(A) and Q(B), which exhibit very different functional properties. This study is focused on elucidating the tuning and control of the primary semiquinone state, Q(A)(-), of photosystem II. We utilize high-resolution two-dimensional hyperfine sublevel correlation spectroscopy to directly probe the strength and orientation of the hydrogen bonds of the Q(A)(-) state with the surrounding protein environment of photosystem II. We observe two asymmetric hydrogen bonding interactions of reduced Q(A)(-) in which the strength of each hydrogen bond is affected by the relative nonplanarity of the bond. This study confirms the importance of hydrogen bonds in the redox tuning of the primary semiquinone state of photosystem II.  相似文献   

12.
Ritter M  Anderka O  Ludwig B  Mäntele W  Hellwig P 《Biochemistry》2003,42(42):12391-12399
The cytochrome bc(1) complex from Paracoccus denitrificans and soluble fragments of its cytochrome c(1) and Rieske ISP subunits are characterized by a combined approach of protein electrochemistry and FTIR difference spectroscopy. The FTIR difference spectra provide information about alterations in the protein upon redox reactions: signals from the polypeptide backbone, from the cofactors, and from amino acid side chains. We describe typical modes for conformational changes in the polypeptide and contributions of different secondary structure elements. Signals attributed to the different cofactors can be presented on the basis of selected potential steps. Modes associated with bound quinone are identified by comparison with spectra of quinone in solution at 1656, 1642, and 1610 cm(-1) and between 1494 and 1388 cm(-1), as well as at 1288 and 1262 cm(-1). Signals originating from the quinone bound at the Q(o) site can be distinguished. On the basis of the infrared data, the total quinone concentration is determined to be 2.6-3.3 quinones per monomer, depending on preparation conditions. The balance of evidence supports the double-occupancy model. Interestingly, the amplitude of the band at 1746 cm(-1) increases with quinone content, reflecting a protonation reaction of acidic groups. In this context, the involvement of glutamates and/or aspartates in the vicinity of the Q(o) site is discussed on the basis of recently determined crystal structures.  相似文献   

13.
Molecular mechanisms of quinone cytotoxicity   总被引:9,自引:0,他引:9  
Quinones are probably found in all respiring animal and plant cells. They are widely used as anticancer, antibacterial or antimalarial drugs and as fungicides. Toxicity can arise as a result of their use as well as by the metabolism of other drugs and various environmental toxins or dietary constituents. In rapidly dividing cells such as tumor cells, cytotoxicity has been attributed to DNA modification. However the molecular basis for the initiation of quinone cytotoxicity in resting or non-dividing cells has been attributed to the alkylation of essential protein thiol or amine groups and/or the oxidation of essential protein thiols by activated oxygen species and/or GSSG. Oxidative stress arises when the quinone is reduced by reductases to a semiquinone radical which reduces oxygen to superoxide radicals and reforms the quinone. This futile redox cycling and oxygen activation forms cytotoxic levels of hydrogen peroxide and GSSG is retained by the cell and causes cytotoxic mixed protein disulfide formation. Most quinones form GSH conjugates which also undergo futile redox cycling and oxygen activation. Prior depletion of cell GSH markedly increases the cell's susceptibility to alkylating quinones but can protect the cell against certain redox cycling quinones. Cytotoxicity induced by hydroquinones in isolated hepatocytes can be attributed to quinones formed by autoxidation. The higher redox potential benzoquinones and naphthoquinones are the most cytotoxic presumably because of their higher electrophilicty and thiol reactivity and/or because the quinones or GSH conjugates are more readily reduced to semiquinones which activate oxygen.  相似文献   

14.
The redox potential of plastoquinone A in spinach chloroplasts was determined. The midpoint potential of the quinone is about +80 mV at pH 7.0 with an n value of 2. The pH-dependence of the potential is -30 mV per pH between pH 4.0 and 5.7, and -60 mV per pH between pH 5.7 and 8.0. The change of the slope at pH 5.7 is interpreted as the protonation of the oxidized plastoquinone A.  相似文献   

15.
The photosynthetic reaction center (RC) from purple bacteria converts light into chemical energy. Although the RC shows two nearly structurally symmetric branches, A and B, light-induced electron transfer in the native RC occurs almost exclusively along the A-branch to a primary quinone electron acceptor Q(A). Subsequent electron and proton transfer to a mobile quinone molecule Q(B) converts it to a quinol, Q(B)H(2). We report the construction and characterization of a series of mutants in Rhodobacter sphaeroides designed to reduce Q(B) via the B-branch. The quantum efficiency to Q(B) via the B-branch Phi(B) ranged from 0.4% in an RC containing the single mutation Ala-M260 --> Trp to 5% in a quintuple mutant which includes in addition three mutations to inhibit transfer along the A-branch (Gly-M203 --> Asp, Tyr-M210 --> Phe, Leu-M214 --> His) and one to promote transfer along the B-branch (Phe-L181 --> Tyr). Comparing the value of 0.4% for Phi(B) obtained in the AW(M260) mutant, which lacks Q(A), to the 100% quantum efficiency for Phi(A) along the A-branch in the native RC, we obtain a ratio for A-branch to B-branch electron transfer of 250:1. We determined the structure of the most effective (quintuple) mutant RC at 2.25 A (R-factor = 19.6%). The Q(A) site did not contain a quinone but was occupied by the side chain of Trp-M260 and a Cl(-). In this structure a nonfunctional quinone was found to occupy a new site near M258 and M268. The implications of this work to trap intermediate states are discussed.  相似文献   

16.
Shigeki Okayama 《BBA》1976,440(2):331-336
The redox potential of plastoquinone A in spinach chloroplasts was determined. The midpoint potential of the quinone is about +80 mV at pH 7.0 with an n value of 2. The pH-dependence of the potential is ?30 mV per pH between pH 4.0 and 5.7, and ?60 mV per pH between pH 5.7 and 8.0. The change of the slope at pH 5.7 is interpreted as the protonation of the oxidized plastoquinone A.  相似文献   

17.
Oxidation-reduction thermodynamic equilibria involving the quinone-acceptor complex have been examined in whole-membrane fragments from Chloroflexus aurantiacus. The primary quinone acceptor was titrated by monitoring the amount of cytochrome c554 photooxidized by a flash of light as a function of the redox potential. In contrast to previous data obtained in purified plasma membranes, in which the primary quinone acceptor exhibited a midpoint potential equal to -50 mV at pH 8.2, in whole-membrane fragments it titrated at -210 mV (pH 8.0), with a pH dependence of -60 mV/pH up to a pK value of 9.3. o-Phenanthroline, an inhibitor of electron transfer from the primary to the secondary quinone acceptor, shifted the Em/pH curve of the primary acceptor to higher redox potentials. The midpoint potential of the secondary quinone acceptor and its dependence on pH has been determined by comparing the kinetics of the charge recombination processes within the reaction center complex in the presence and in the absence of o-phenanthroline. It is concluded that both the primary and the secondary quinone acceptors interact with a proton, with pK values of 9.3 and of approximately 10.2 respectively. At physiological pH the electron appears to be stabilized on the secondary with respect to the primary quinone acceptor by approximately 60 meV.  相似文献   

18.
Photosystem I is a large macromolecular complex located in the thylakoid membranes of chloroplasts and in cyanobacteria that catalyses the light driven reduction of ferredoxin and oxidation of plastocyanin. Due to the very negative redox potential of the primary electron transfer cofactors accepting electrons, direct estimation by redox titration of the energetics of the system is hampered. However, the rates of electron transfer reactions are related to the thermodynamic properties of the system. Hence, several spectroscopic and biochemical techniques have been employed, in combination with the classical Marcus theory for electron transfer tunnelling, in order to access these parameters. Nevertheless, the values which have been presented are very variable. In particular, for the case of the tightly bound phylloquinone molecule A(1), the values of the redox potentials reported in the literature vary over a range of about 350 mV. Previous models of Photosystem I have assumed a unidirectional electron transfer model. In the present study, experimental evidence obtained by means of time resolved absorption, photovoltage, and electron paramagnetic resonance measurements are reviewed and analysed in terms of a bi-directional kinetic model for electron transfer reactions. This model takes into consideration the thermodynamic equilibrium between the iron-sulfur centre F(X) and the phylloquinone bound to either the PsaA (A(1A)) or the PsaB (A(1B)) subunit of the reaction centre and the equilibrium between the iron-sulfur centres F(A) and F(B). The experimentally determined decay lifetimes in the range of sub-picosecond to the microsecond time domains can be satisfactorily simulated, taking into consideration the edge-to-edge distances between redox cofactors and driving forces reported in the literature. The only exception to this general behaviour is the case of phylloquinone (A(1)) reoxidation. In order to describe the reported rates of the biphasic decay, of about 20 and 200 ns, associated with this electron transfer step, the redox potentials of the quinones are estimated to be almost isoenergetic with that of the iron sulfur centre F(X). A driving force in the range of 5 to 15 meV is estimated for these reactions, being slightly exergonic in the case of the A(1B) quinone and slightly endergonic, in the case of the A(1A) quinone. The simulation presented in this analysis not only describes the kinetic data obtained for the wild type samples at room temperature and is consistent with estimates of activation energy by the analysis of temperature dependence, but can also explain the effect of the mutations around the PsaB quinone binding pocket. A model of the overall energetics of the system is derived, which suggests that the only substantially irreversible electron transfer reactions are the reoxidation of A(0) on both electron transfer branches and the reduction of F(A) by F(X).  相似文献   

19.
Mammalian thioredoxin reductases (TrxR) are important selenium-dependent antioxidant enzymes. Quinones, a wide group of natural substances, human drugs, and environmental pollutants may act either as TrxR substrates or inhibitors. Here we systematically analyzed the interactions of TrxR with different classes of quinone compounds. We found that TrxR catalyzed mixed single- and two-electron reduction of quinones, involving both the selenium-containing motif and a second redox center, presumably FAD. Compared with other related pyridine nucleotide-disulfide oxidoreductases such as glutathione reductase or trypanothione reductase, the k(ca)(t)/K(m) value for quinone reduction by TrxR was about 1 order of magnitude higher, and it was not directly related to the one-electron reduction potential of the quinones. A number of quinones were reduced about as efficiently as the natural substrate thioredoxin. We show that TrxR mainly cycles between the four-electron reduced (EH(4)) and two-electron reduced (EH(2)) states in quinone reduction. The redox potential of the EH(2)/EH(4) couple of TrxR calculated according to the Haldane relationship with NADPH/NADP(+) was -0.294 V at pH 7.0. Antitumor aziridinylbenzoquinones and daunorubicin were poor substrates and almost inactive as reversible TrxR inhibitors. However, phenanthrene quinone was a potent inhibitor (approximate K(i) = 6.3 +/- 1 microm). As with other flavoenzymes, quinones could confer superoxide-producing NADPH oxidase activity to mammalian TrxR. A unique feature of this enzyme was, however, the fact that upon selenocysteine-targeted covalent modification, which inactivates its normal activity, reduction of some quinones was not affected, whereas that of others was severely impaired. We conclude that interactions with TrxR may play a considerable role in the complex mechanisms underlying the diverse biological effects of quinones.  相似文献   

20.
A highly active, large-scale preparation of cytochrome bc1 complex has been obtained from the photosynthetic purple bacterium Rhodovulum (Rhv.) sulfidophilum. It has been characterized using mass spectrometry, quinone and lipid analysis as well as inhibitor binding. About 35 mg of pure complex can be obtained from 1 g of membrane protein. EPR spectroscopy and optical titrations have been used to obtain the redox midpoint potentials of the cofactors. The Em-value of 310 mV for the Rieske protein is the most positive midpoint potential for this protein in a bc1 complex so far. The bc1 complex from Rhv. sulfidophilum is very stable and consists of three subunits and a 6-kDa polypeptide. The complex appears as a dimer in solution and contains six quinone molecules per monomer which are tightly bound. EPR spectroscopy shows that the Q(o) site is highly occupied. High detergent concentrations convert the complex into an inactive, monomeric form that has lost the Rieske protein as well as the quinones and the 6-kDa component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号