首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple, sensitive, and reproducible colorimetric method for the determination of tryptophan in amounts as low as 2 μg is described. It is based on the oxidation of tryptophan by sodium nitrite and the coupling of the oxidized product to the leucodye N-1-(naphthyl)ethylenediamine dihydrochloride. The purple-pink product has an absorption maximum at 550 nm. There is no interference by carbohydrates, other amino acids, neutral salts, or a number of other compounds likely to be found in tissue hydrolysates. A number of indole derivatives including indole-3-acetic acid also react to give a colored product. Dipeptides containing tryptophan are much less reactive than free tryptophan; hence proteins must be hydrolyzed completely for the method to be useful. The assay is carried out at room temperature and can be modified easily to increase or decrease its sensitivity. It has been employed to determine the tryptophan content of a number of proteins following alkaline hydrolysis. Generally, values obtained were in close agreement with values reported in the literature.  相似文献   

2.
The emission of ultraweak light from cells is a phenomenon associated with the oxidation of biomolecules by reactive oxygen species. The indole moiety present in tryptophan, serotonin and melatonin is frequently associated with the emission of light during the oxidation of these metabolites. This study presents results for hypobromous acid (HOBr) oxidation of tryptophan as a putative endogenous source of ultraweak light emission. We found that chemiluminescence elicited by the oxidation of tryptophan by HOBr was significantly higher than by hypochlorous acid (HOCl). This difference was related to secondary oxidation reactions, which were more intense using HOBr. The products identified during oxidation by HOCl, but depleted by using HOBr, were N‐formylkynurenine, kynurenine, 1,2,3,3a,8,8a‐hexahydro‐3a‐hydroxypyrrolo[2,3‐b]‐indole‐2‐carboxylic acid, oxindolylalanine and dioxindolylalanine. The emission of light is dependent on the free α‐amino group of tryptophan, and hence, the indole of serotonin and melatonin, although efficiently oxidized, did not produce chemiluminescence. The emission of light was even greater using taurine monobromamine and dibromamine as the oxidant compared to HOBr. A mechanism based on bromine radical intermediates is suggested for the higher efficiency in light emission. Altogether, the experimental evidence described in the present study indicates that the oxidation of free tryptophan or tryptophan residues in proteins is an important source of ultraweak cellular emission of light. This light emission is increased in the presence of taurine, an amino acid present in large amounts in leukocytes, where this putative source of ultraweak light emission is even more relevant. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Reversed-phase HPLC method by direct plasma injection has been developed for the analysis of major tryptophan metabolites (both metabolites in kynurenine pathways and in indole pathways). Two columns were used: one was a short precolumn of protein-coated octadecylsilane (ODS) for deproteinization and also for trapping of tryptophan metabolites, and the other was an analytical column of the usual ODS. By a column-switching method, the metabolites trapped in the precolumn were allowed to be eluted through the analytical column. The recovery of the spiked metabolites in plasma by the present method was almost quantitative (98-102%) with good reproducibility (CV less than 3%, within-run), and the method is determined to be simple and reproducible for the analysis of total (free + protein-bound) tryptophan metabolites in plasma. The analysis of rabbit plasma showed several peaks corresponding to kynurenine, kynurenic acid, 5-hydroxyindole-3-acetic acid, indole-3-lactic acid, indole-3-acetic acid, indole-3-propionic acid, and 5-hydroxy-tryptamine in addition to tryptophan.  相似文献   

4.
Trifluoroalanine is a mechanism-based inactivator of Escherichia coli tryptophan indole-lyase (tryptophanase) and E. coli tryptophan synthase (R. B. Silverman and R. H. Abeles, 1976, Biochemistry 15, 4718-4723). We have found that indole is able to prevent inactivation of tryptophan indole-lyase by trifluoroalanine. The protection of tryptophan indole-lyase by indole exhibits saturation kinetics, with a KD of 0.03 mM, which is comparable to the KI for inhibition of pyruvate ion formation (0.01 mM) and the Km for L-tryptophan synthesis. Fluoride electrode measurements indicate the formation of 28 mol of fluoride ion per mole of enzyme during inactivation of tryptophan indole-lyase, and 121 mol of fluoride ion are formed per mole of enzyme in the presence of 2 mM indole during the same incubation period. 19F NMR spectra of reaction mixtures of tryptophan indole-lyase and trifluoroalanine showed evidence only for fluoride ion formation, in either the absence or the presence of indole, and difluoropyruvic acid was not detected. The partition ratio, kcat/kinact, is estimated to be 9. Tryptophan indole-lyase in the presence of trifluoroalanine exhibits visible absorption peaks at 446 and 478 nm, which decay at the same rate as inactivation. However, in the presence of 1 mM indole and trifluoralanine, tryptophan indole-lyase exhibits a peak only at 420 nm, and the spectra show a gradual increase at 300-310 nm with incubation. In contrast, tryptophan synthase is not protected by indole from inactivation by trifluoroalanine, and the absorption peak at 408 nm for the tryptophan synthase-trifluoroalanine complex is unaffected by indole. These results demonstrate that inactivation of tryptophan indole-lyase occurs via a catalytically competent species, probably the beta,beta-difluoro-alpha-aminoacrylate intermediate, which can be partitioned from inactivation to products by a reactive aromatic nucleophile, indole.  相似文献   

5.
The free energies of transfer for indole and tryptophan derivatives and pentapeptides having single tryptophan residues from aqueous to sodium dodecyl sulfate (SDS) micellar phases have been systematically studied using the conventional method of ultraviolet absorption spectrophotometry. The free energies for the position isomers of methyl indoles varied depending on the substitution positions. Thus, the contribution of the methyl group to the binding affinity of the 4-methyl indole to the micelle was about twice that of the 2- and 7-methyl indoles. The free energy changes with the introduction of halogen groups to the indole rings were correlated to the nonpolar water-accessible surface area (DeltaA(np)) of the halogen moieties, which were regarded as hydrophobic. The relationships followed straight lines passing through the origins. Position dependence having tendencies similar to the methyl indoles was observed among the magnitudes of the slopes of the straight lines. These results strongly suggest that the indole rings of the derivatives residing in the micellar interface regions direct their imino moieties --NH-- toward the micellar surfaces. Experiments using model tryptophan pentapeptides showed that the magnitude of free energy change per methylene unit of an alkyl amino acid residue in the pentapeptide increased with elongation of the alkyl moiety and was not a constant value as reported for various alkyl compounds. When the peptides distribute to the SDS micelles, the peptide backbones are anchored in aqueous phases and the amino acid side chains in the interfaces extend their alkyl groups toward the micellar centers. Thus, the free energy changes can be connected to the positions of the alkyl groups of the amino acid residues in the micelles.  相似文献   

6.
Widholm JM 《Plant physiology》1981,67(6):1101-1104
Twenty-three indole analogs were used to inhibit the growth of carrot and tobacco suspension cultures. The addition of tryptophan or indole partially reversed the inhibition of both cell lines only for 4-fluoroindole, 5-fluoroindole, and 6-fluoroindole. Inhibition of tobacco cell growth by 5-aminoindole, 5-methoxyindole, 6-methoxyindole, or 7-methoxyindole was also partially reversed. Previously selected carrot and tobacco lines, which have high free tryptophan levels, grew in the presence of the analogs for which reversal was noted in all cases except 5-aminoindole and also in some other cases. Growth inhibition caused by all 10 tryptophan analogs studied was partially reversible by tryptophan or indole and the high tryptophan lines were also able to grow in the presence of concentrations inhibitory to the wild type lines.  相似文献   

7.
A method for the selective modification of tryptophan residues based on the reaction of malondialdehyde with the indole nitrogen of the tryptophan side chain at acidic conditions is presented. The condensation reaction is quantitative and leads to a substituted acrolein moiety with a remaining reactive aldehyde group. As is shown, this group can be further converted to a hydrazone using hydrazide compounds, but if hydrazine or phenylhydrazine are used, release of the free indole group is observed upon cleavage of the substitution. Alternatively, secondary amines such as pyrrolidine may also act as cleavage reagents. This general reaction scheme has been adapted and optimized for the derivatization of tryptophan-containing peptides and small N-heterocyclic compounds. It serves as the basis of a reversible tagging scheme for Trp-peptides or molecules of interest carrying indole structures as it allows the specific attachment and removal of a reactive group that may be used for a variety of purposes such as affinity tagging.  相似文献   

8.
A tryptophan auxotroph of aerobically grown Rodospirillum rubrum was isolated after mutagenesis and replica plating. The mutant grows on tryptophan or indole, accumulates indole glycerol phosphate, lacks the capacity to convert indole glycerol phosphate to indole glycerol phosphate to indole, and finally is defective in photosynthetic growth. The strain is, therefore, analogous to a Trp A mutant which is defective in the alpha-subunit structural gene of tryptophan synthetase.  相似文献   

9.
Cells sensitive to the cytocidal effect of tumor necrosis factor (TNF) were protected against this effect when growth in the presence of elevated concentrations of tryptophan. Several other indole derivatives also provided protection against TNF cytotoxicity. Most effective were indole itself and its monomethyl derivatives, providing a degree of protection greatly exceeding that observed with tryptophan. Protection was also observed against the cytocidal effect of TNF applied in the presence of a protein synthesis inhibitor. The protective effect of tryptophan was largely dependent on preexposure of the cells, for several hours, to a high concentration of this amino acid. On the other hand, indole was protective also when applied to cells together with TNF, or even two hours after TNF application. The inhibition of the cytotoxicity of TNF by tryptophan and other indole derivatives may serve as a useful experimental tool in exploring the mechanisms and the physiological implications of TNF cytotoxicity.  相似文献   

10.
The external heavy atom effect of mercury on the spectroscopic properties of the indole ring has been used to investigate stacking interactions of tryptophan with mercurinucleotides in mixed aggregates formed in frozen aqueous solutions as well as in oligopeptide-polynucleotide complexes. This effect is characterized at 77 K by a quenching of the tryptophan fluorescence, an enhancement of the phosphorescence emission and a drastic shortening of the phosphorescence lifetime. These phenomena result from an enhanced spin-orbit coupling due to a close contact between the mercury atom and the indole ring. Dissociation of the complexes leads to a recovery of the spectroscopic properties of the free tryptophan ring. The possible use of this spin-orbit probe to provide evidence for stacking interactions in protein-nucleic acid complexes is discussed.  相似文献   

11.
A simple and sensitive spectrophotometric method for the determination of tryptophan (TRP) is described. The method is based on the coupling reaction of tryptophan with diazotized p-phenylenediamine dihydrochloride (PPDD) in sulfuric acid medium to give the colored product having an absorption maximum at 520 nm. The coupled product was stable for 2h. Beer's law is obeyed in the tryptophan concentration range of 0.25-11 microg/ml. The method is applied for the analysis of pharmaceutical preparations of tryptophan and also in protein samples for tryptophan. Common excipients used as additives in pharmaceutical preparations do not interfere in the proposed method and the significant feature of the method is that most of the amino acids do not interfere in the determination of tryptophan.  相似文献   

12.
W C Wimley  S H White 《Biochemistry》1992,31(51):12813-12818
We have measured the partitioning of the tryptophan side-chain analogs 3-methylindole and N-methylindole between water and cyclohexane over the temperature range 8-55 degrees C to investigate the relative contribution of the imine-NH- to the free energy of transfer. We take advantage of the fact that the indole imine nitrogen is blocked by a methyl group in N-methylindole. Unlike previous studies, we take into account the water present in the cyclohexane phase. Free energies of partitioning were calculated using mole-fraction, volume-fraction, and Flory-Huggins-corrected volume-fraction partition coefficients [De Young, L. R., & Dill, K. A. (1990) J. Phys. Chem. 94, 801-809; Sharp, K. A., Nicholls, A., Friedman, R., & Honig, B. (1991) Biochemistry 30, 9686-9697]. These approaches account for configurational entropy changes in different ways and thus lead to different values for the calculated free energies of transfer. There is a 2-3-fold difference in the free energies calculated from our measurements, using the different units. Independent of units, the partitioning of both compounds involves identical entropy changes. However, 3-methylindole has an additional unfavorable enthalpic contribution to partitioning into cyclohexane of +1.6 kcal/mol (independent of units) which is presumably the cost of removing the indole -NH- group from water and transferring it to cyclohexane. In cyclohexane, 3-methylindole forms hydrogen bonds with water that cause water to copartition into cyclohexane with the solute. A method is described which allows the partitioning process to be examined independent of subsequent interactions with water in the solvent.  相似文献   

13.
The development of new therapies against infectious diseases is vital in developing countries. Among infectious diseases, tuberculosis is considered the leading cause of death. A target for development of new drugs is the tryptophan pathway. The last enzyme of this pathway, tryptophan synthase (TRPS), is responsible for conversion of the indole 3-glycerol phosphate into indol and the condensation of this molecule with serine-producing tryptophan. The present work describes the molecular models of TRPS from Mycobacterium tuberculosis (MtTRPS) complexed with six inhibitors, the indole 3-propanol phosphate and five arylthioalkyl-phosphonated analogs of substrate of the alpha-subunit. The molecular models of MtTRPS present good stereochemistry, and the binding of the inhibitors is favorable. Thus, the generated models can be used in the design of more specific drugs against tuberculosis and other infectious diseases.  相似文献   

14.
H Tanaka  K Tanizawa  T Arai  K Saito  T Arai  K Soda 《FEBS letters》1986,196(2):357-360
The tryptophan synthase alpha 2 beta 2 complex from Escherichia coli has been found to catalyze the beta-replacement reaction of L-serine with indazole, an indole analog which has a nitrogen atom at the 2-position (pyrazole ring). The reaction product was isolated and identified as beta-indazolealanine by mass spectrometric, elemental and NMR analyses. Careful assignment of 1H- and 13C-signals with several NMR techniques revealed that the beta-carbon of the product alanine moiety was bound to the 1-N-position of the indazole ring. This is the first example of the beta-replacement reaction catalyzed by tryptophan synthase occurring at any other position than the 3-position of indole analogs.  相似文献   

15.
Tryptophan is a precursor for many biologically active secondary metabolites. We have investigated the origin of indole pigments first described in the pityriasis versicolor-associated fungus Malassezia furfur . Some of the identified indole pigments have properties potentially explaining characteristics of the disease. As M. furfur is not amenable to genetic manipulation, we used Ustilago maydis to investigate the pathway leading to pigment production from tryptophan. We show by high-performance liquid chromatography, mass spectrometry and nuclear magnetic resonance analysis that the compounds produced by U. maydis include those putatively involved in the etiology of pityriasis versicolor. Using a reverse genetics approach, we demonstrate that the tryptophan aminotransferase Tam1 catalyses pigment biosynthesis by conversion of tryptophan into indolepyruvate. A forward genetics approach led to the identification of mutants incapable of producing the pigments. These mutants were affected in the sir1 gene, presumably encoding a sulphite reductase. In vitro experiments with purified Tam1 showed that 2-oxo 4-methylthio butanoate serves as a substrate linking tryptophan deamination to sulphur metabolism. We provide the first direct evidence that these indole pigments form spontaneously from indolepyruvate and tryptophan without any enzymatic activity. This suggests that compounds with a proposed function in M. furfur -associated disease consist of indolepyruvate-derived spontaneously generated metabolic by-products.  相似文献   

16.
17.
The following enzyme activities of the tryptophan-nicotinic acid pathway were studied in male New Zealand rabbits: liver tryptophan 2,3-dioxygenase, intestine indole 2,3-dioxygenase, liver and kidney kynurenine 3-monooxygenase, kynureninase, kynurenine-oxoglutarate transaminase, 3-hydroxyanthranilate 3,4-dioxygenase, and aminocarboxymuconate-semialdehyde decarboxylase. Intestine superoxide dismutase and serum tryptophan were also determined. Liver tryptophan 2,3-dioxygenase exists only as holoenzyme, but intestine indole 2,3-dioxygenase is very active and can be considered the key enzyme which determines how much tryptophan enters the kynurenine pathway also under physiological conditions. The elevated activity of indole 2,3-dioxygenase in the rabbit intestine could be related to the low activity of superoxide dismutase found in intestine. Kynurenine 3-monooxygenase appeared more active than kynurenine-oxoglutarate transaminase and kynureninase, suggesting that perhaps a major portion of kynurenine available from tryptophan may be metabolized to give 3-hydroxyanthranilic acid, the precursor of nicotinic acid. In fact, 3-hydroxyanthranilate 3,4-dioxygenase is much more active than the other previous enzymes of the kynurenine pathway. In the rabbit liver 3-hydroxyanthranilate 3,4-dioxygenase and aminocarboxymuconate-semialdehyde decarboxylase show similar activities, but in the kidney 3-hydroxyanthranilate 3,4-dioxygenase activity is almost double. These data suggest that in rabbit tryptophan is mainly metabolized along the kynurenine pathway. Therefore, the rabbit can also be a suitable model for studying tryptophan metabolism in pathological conditions.  相似文献   

18.
Auxin precursors retard abscission when applied to debladed petioles of Coleus blumei Benth. The d and l forms of tryptophan are equally effective in retarding abscission. Tryptamine is more effective than is tryptophan. Both compounds apparently are converted to auxin through an aldehyde intermediate. The evidence presented suggests that a major pathway of tryptophan metabolism proceeds through tryptamine, as can be demonstrated by the use of amine oxidase inhibitors in the petiole tissue. Cell free preparations of the tissues metabolize tryptophan-1-(14)C with the release of carbon dioxide. The rate of tryptophan mtabolism in abscission tissue is 5 times that in distal petiole tissue. Radioactivity is associated with basic indole conversion products as well as with neutral and acidic fractions. The radioactivity is most concentrated in the neutral fraction. The results indicate that the Coleus petiole itself is capable of producing auxin.  相似文献   

19.
The bacterial tryptophan synthase alpha(2)beta(2) complex catalyzes the final reactions in the biosynthesis of L-tryptophan. Indole is produced at the active site of the alpha-subunit and is transferred through a 25-30 A tunnel to the beta-active site, where it reacts with an aminoacrylate intermediate. Lane and Kirschner proposed a two-step nucleophilic addition-tautomerization mechanism for the reaction of indole with the aminoacrylate intermediate, based on the absence of an observed kinetic isotope effect (KIE) when 3-[(2)H]indole reacts with the aminoacrylate intermediate. We have now observed a KIE of 1.4-2.0 in the reaction of 3-[(2)H]indole with the aminoacrylate intermediate in the presence of monovalent cations, but not when an alpha-subunit ligand, disodium alpha-glycerophosphate (Na(2)GP), is present. Rapid-scanning stopped flow kinetic studies were performed of the reaction of indole and 3-[(2)H]indole with tryptophan synthase preincubated with L-serine, following the decay of the aminoacrylate intermediate at 350 nm, the formation of the quinonoid intermediate at 476 nm, and the formation of the L-Trp external aldimine at 423 nm. The addition of Na(2)GP dramatically slows the rate of reaction of indole with the alpha-aminoacrylate intermediate. A primary KIE is not observed in the reaction of 3-[(2)H]indole with the aminoacrylate complex of tryptophan synthase in the presence of Na(2)GP, suggesting binding of indole with tryptophan synthase is rate limiting under these conditions. The reaction of 2-methylindole does not show a KIE, either in the presence of Na(+) or Na(2)GP. These results support the previously proposed mechanism for the beta-reaction of tryptophan synthase, but suggest that the rate limiting step in quinonoid intermediate formation from indole and the aminoacrylate intermediate is deprotonation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号