首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Webber BL  Miller RE  Woodrow IE 《Phytochemistry》2007,68(15):2068-2074
Cyanogenesis, the liberation of volatile hydrogen cyanide from endogenous cyanide-containing compounds, is a proven plant defence mechanism and the particular cyanogens involved have taxonomic utility. The cyclopentenoncyanhydrin glycoside gynocardin was the only cyanogen isolated from foliar tissue of the rare Australian rainforest tree, Ryparosa kurrangii (Achariaceae). Mechanical damage simulating foliar herbivory did not induce a significant increase in the expression of cyanogenesis over a 24h period, indicating cyanogenic herbivore defence in R. kurrangii is constitutive. The cyanogenic potential of mature leaves was quantitatively polymorphic between trees in a natural population, ranging from 0.54 to 4.77 mg CN g(-1) dry wt leaf tissue.  相似文献   

2.
《Phytochemistry》1986,25(10):2349-2350
The cyclopentenoid cyanogenic glucoside gynocardin and 4-cyclopentene-1α,2β,3α-triol have been isolated from foliage of Ceratiosicyos laevis (Achariaceae). The systematic significance of the cyanogenic glycosides in Violales is briefly discussed.  相似文献   

3.
The phylogenetic placement of Kuhlmanniodendron Fiaschi & Groppo (Achariaceae) within Malpighiales was investigated with rbcL sequence data. This genus was recently created to accommodate Carpotroche apterocarpa Kuhlm., a poorly known species from the rainforests of Espírito Santo, Brazil. One rbcL sequence was obtained from Kuhlmanniodendron and analyzed with 73 additional sequences from Malpighiales, and 8 from two closer orders, Oxalidales and Celastrales, all of which were available at Genbank. Phylogenetic analyses were carried out with maximum parsimony and Bayesian inference; bootstrap analyses were used in maximum parsimony to evaluate branch support. The results confirmed the placement of Kuhlmanniodendron together with Camptostylus, Lindackeria, Xylotheca, and Caloncoba in a strongly supported clade (posterior probability = 0.99) that corresponds with the tribe Lindackerieae of Achariaceae (Malpighiales). Kuhlmanniodendron also does not appear to be closely related to Oncoba (Salicaceae), an African genus with similar floral and fruit morphology that has been traditionally placed among cyanogenic Flacourtiaceae (now Achariaceae). A picrosodic paper test was performed in herbarium dry leaves, and the presence of cyanogenic glycosides, a class of compounds usually found in Achariaceae, was detected. Pollen morphology and wood anatomy of Kuhlmanniodendron were also investigated, but both pollen (3-colporate and microreticulate) and wood, with solitary to multiple vessels, scalariform perforation plates and other features, do not seem to be useful to distinguish this genus from other members of the Achariaceae and are rather common among the eudicotyledons as a whole. However, perforated ray cells with scalariform plates, an uncommon wood character, present in Kuhlmanniodendron are similar to those found in Kiggelaria africana (Pangieae, Achariaceae), but the occurrence of such cells is not mapped among the angiosperms, and it is not clear how homoplastic this character could be.  相似文献   

4.
Carica papaya L. (Caricaceae) was found to contain the cyclopentene-ring containing cyanogenic glucoside tetraphyllin B as well as the aromatic cyanogenic glucoside prunasin. This is the first report of the isolation of cyanogenic glucosides from a species known to produce glucosinolates. The presence of both classes of compounds suggests that Carica papaya may be intermediate between the Capparales and the Violales.  相似文献   

5.
Cyanogenic glycosides are ancient biomolecules found in more than 2,650 higher plant species as well as in a few arthropod species. Cyanogenic glycosides are amino acid-derived β-glycosides of α-hydroxynitriles. In analogy to cyanogenic plants, cyanogenic arthropods may use cyanogenic glycosides as defence compounds. Many of these arthropod species have been shown to de novo synthesize cyanogenic glycosides by biochemical pathways that involve identical intermediates to those known from plants, while the ability to sequester cyanogenic glycosides appears to be restricted to Lepidopteran species. In plants, two atypical multifunctional cytochromes P450 and a soluble family 1 glycosyltransferase form a metabolon to facilitate channelling of the otherwise toxic and reactive intermediates to the end product in the pathway, the cyanogenic glycoside. The glucosinolate pathway present in Brassicales and the pathway for cyanoalk(en)yl glucoside synthesis such as rhodiocyanosides A and D in Lotus japonicus exemplify how cytochromes P450 in the course of evolution may be recruited for novel pathways. The use of metabolic engineering using cytochromes P450 involved in biosynthesis of cyanogenic glycosides allows for the generation of acyanogenic cassava plants or cyanogenic Arabidopsis thaliana plants as well as L. japonicus and A. thaliana plants with altered cyanogenic, cyanoalkenyl or glucosinolate profiles.  相似文献   

6.
The cyanogenic glucoside profile of Eucalyptus camphora was investigated in the course of plant ontogeny. In addition to amygdalin, three phenylalanine-derived cyanogenic diglucosides characterized by unique linkage positions between the two glucose moieties were identified in E. camphora tissues. This is the first time that multiple cyanogenic diglucosides have been shown to co-occur in any plant species. Two of these cyanogenic glucosides have not previously been reported and are named eucalyptosin B and eucalyptosin C. Quantitative and qualitative differences in total cyanogenic glucoside content were observed across different stages of whole plant and tissue ontogeny, as well as within different tissue types. Seedlings of E. camphora produce only the cyanogenic monoglucoside prunasin, and genetically based variation was observed in the age at which seedlings initiate prunasin biosynthesis. Once initiated, total cyanogenic glucoside concentration increased throughout plant ontogeny with cyanogenic diglucoside production initiated in saplings and reaching a maximum in flower buds of adult trees. The role of multiple cyanogenic glucosides in E. camphora is unknown, but may include enhanced plant defense and/or a primary role in nitrogen storage and transport.  相似文献   

7.
R. Hegnauer 《Plant biosystems》2013,147(1-6):15-26
Abstract

The chemotaxonomic approach to plant classification is illustrated by alkaloids, acetogenic quinones, iridoid compounds and cyanogenic constituents. Difficulties in the evaluation of similarities are discussed and the frequent occurrence of metabolic convergencies is stressed. Taxa used to illustrate the taxonomic meaning of chemical characters of plants are Colchicum, Dionco: phyllaceae, Ancistrocladaceae, Callitrichaceae, Hippuridaceae, Theligonaceae, Ranunculaceae, Magnoliidae and Angiosperms as a whole.  相似文献   

8.
Summary Collections of the slug Deroceras reticulatum were made from grassland sites containing contrasting frequencies of the cyanogenic morph of white clover, Trifolium repens. In choice chamber experiments, slugs obtained from sites with a low frequency of cyanogenic clover showed a significantly greater degree of selective eating of acyanogenic morphs than slugs taken from a site containing a high frequency of cyanogenic clover. Differences in selectivity between populations were caused both by differences in the rate of initiation of feeding on cyanogenic morphs, and by differences in the extent of damage once feeding had been initiated. The implications of these results for the cyanogenic polymorphism of T. repens are discussed.  相似文献   

9.
王子迎 《菌物学报》2007,26(4):549-556
包括大豆在内的许多植物都可以产生氰化物,对侵染的病原菌产生毒害作用而阻碍其进一步扩展。采用抑制性差减杂交(suppression subtractive hybridization,SSH)的方法,筛选到一个在大豆疫霉侵染早期上调表达的、编码腈水解酶的cDNA片段;克隆了该基因的全长序列,命名为PsNIA。Southern杂交结果显示,PsNIA在大豆疫霉基因组中只有1个拷贝。系统发育分析表明,PsNIA与绿脓杆菌Pseudomonas aeruginosa的腈水解酶的序列同源性最高,且该基因编码的氨基酸序列具有腈水解酶的保守结构域。RT-PCR分析表明,该基因在大豆疫霉侵染大豆12h时可以检测到转录。  相似文献   

10.
王子迎 《微生物学报》2007,26(4):549-556
包括大豆在内的许多植物都可以产生氰化物,对侵染的病原菌产生毒害作用而阻碍其进一步扩展。采用抑制性差减杂交(suppression subtractive hybridization,SSH)的方法,筛选到一个在大豆疫霉侵染早期上调表达的、编码腈水解酶的cDNA片段;克隆了该基因的全长序列,命名为PsNIA。Southern杂交结果显示,PsNIA在大豆疫霉基因组中只有1个拷贝。系统发育分析表明,PsNIA与绿脓杆菌Pseudomonas aeruginosa的腈水解酶的序列同源性最高,且该基因编码的氨基酸序列具有腈水解酶的保守结构域。RT-PCR分析表明,该基因在大豆疫霉侵染大豆12h时可以检测到转录。  相似文献   

11.
Cyanogenesis-the production of toxic hydrogen cyanide (HCN) by damaged tissue-inTrifolium repens L. (white clover), a type of most important pasture legume, has been studied at different elevations of Darjeeling Himalaya (latitude-27° 2′ 57″ N, longitude-88° 15′ 45″ E). Release of HCN takes place due to reaction between cyanogenic glucosides stored in vacuoles of the leaf cell and the corresponding enzyme β-glucosidase present in another compartment, often cell wall. Cyanogenesis, a defense system in plant, protects the clover from herbivore and inhibits grazing. Biochemical analysis showed the presence and absence of the cyanogenesis trait within the population in different proportions at different elevations. Acyanogenic individuals also showed variations with respect to presence or absence of either cyanogenic glucosides or β-glucosidase enzyme or both. The distribution of cyanogenic and acyanogenic plants was found in all places, but at lower altitudes (2084–2094 m) the dominating plants were cyanogenic whereas in higher altitude (2560 m) the dominating plants were acyanogenic. It was observed that blister beetle (Mylabris pustalata Thunb.) and the mollusc (Macrochlamys tusgurium Benson.) were the most common consumer of leaflets ofT. repens. Six categories of damage on white clover leaf by these animals were recorded. Our results suggest that the two selective factors or forces i.e. very cold temperature (harmful to cyanogenic plants) at higher altitude as well as indiscriminate but preferential predation (harmful to acyanogenic plants) interact to affect the system of cyanogenesis and also to cause the stable and protective polymorphism inT. repens rather than genotypic differences present among the plants.  相似文献   

12.
Over 90% of the cyanogenic precursors ofHevea seeds is stored in the endosperm tissue. During seedling development most of the cyanogenic material is consumed to form noncyanogenic compounds. No gaseous HCN is liberated in the course of this process. The -glucosidase, responsible for the cleavage of cyanogenic glucosides and the key enzyme for cyanogenesis is widely distributed over all tissues. The highest enzyme activity of the HCN-metabolizing -cyanoalaninesynthase is found in young seedling tissues. It is concluded, that the cyanogenic glucosides must be transported and metabolized in the young, growing tissues.Lecture held at the Tagung der Deutschen Botanischen Gesellschaft in Vienna, September 1984.  相似文献   

13.
Summary The effect of the cyanogenic glucosides linamarin and lotaustralin and their hydrolyzing enzyme linamarase was studied in a B2 generation segregating for the genes Ac and Li. Plants containing the glucosides are protected against grazing by snails both in the seedling stage and as adult plants. In seedlings, however, there is a direct effect on survival, whereas in adult plants the leaf area of plants containing linamarin/lotaustralin is less reduced under intense grazing. Linamarase has no effect on grazing by snails, possibly as a result of the presence of -glucosidase activity in the gut of these animals. The genes Ac and Li, or genes tightly linked to them, have other effects as well: plants possessing one dominant Ac allele produce fewer flowers than homozygous ac plants. I compared this difference in flower production to the metabolic cost of producing the cyanogenic glucosides. The energy content of the difference in flower head production far exceeded the metabolic cost of cyanoglucoside production in Acac plants. It is possible that the cost of maintaining a certain level of cyanoglucosides is much more important for the plant than the initial cost of biosynthesis. The importance of the effects of Ac and Li in the maintenance of cyanogenic polymorphism in white clover is discussed.  相似文献   

14.
Cyanide and cyanide-containing compounds from anthropogenic sources can be an environmental threat because of their potential toxicity. A remediation option for cyanide-contaminated soil may be through the use of plants and associated rhizosphere microorganimsms that have the ability to degrade cyanide compounds. Cyanogenic plant species are known to produce cyanide, but they also have the ability to degrade these compounds. In addition, the presence of these plants in soil may result in an increase in cyanide degrading microorganisms in the rhizosphere. Two cyanogenic species (Sorghum bicolor and Linum usitassium) and a noncyanogenic species (Panicum virgatum) were selected for a 200-day phytoremediation study to assess their potential use for removal of cyanide from soil. For both cyanogenic species, approximately 85% of the iron cyanide in soil was removed, whereas very little iron cyanide was removed in the unvegetated control or in the presence of Panicum virgatum. In addition, the activity of microbial communities in the rhizosphere of cyanogenic plants was higher than in cyanide-contaminated soil from unvegetated soil.  相似文献   

15.
Plants produce a plethora of secondary metabolites which constitute a wealth of potential pharmaceuticals, pro-vitamins, flavours, fragrances, colorants and toxins as well as a source of natural pesticides. Many of these valuable compounds are only synthesized in exotic plant species or in concentrations too low to facilitate commercialization. In some cases their presence constitutes a health hazard and renders the crops unsuitable for consumption. Metabolic engineering is a powerful tool to alter and ameliorate the secondary metabolite composition of crop plants and gain new desired traits. The interplay of a multitude of biosynthetic pathways and the possibility of metabolic cross-talk combined with an incomplete understanding of the regulation of these pathways, explain why metabolic engineering of plant secondary metabolism is still in its infancy and subject to much trial and error. Cyanogenic glucosides are ancient defense compounds that release toxic HCN upon tissue disruption caused e.g. by chewing insects. The committed steps of the cyanogenic glucoside biosynthetic pathway are encoded by three genes. This unique genetic simplicity and the availability of the corresponding cDNAs have given cyanogenic glucosides pioneering status in metabolic engineering of plant secondary metabolism. In this review, lessons learned from metabolic engineering of cyanogenic glucosides in Arabidopsis thaliana (thale cress), Nicotiana tabacum cv Xanthi (tobacco), Manihot esculenta Crantz (cassava) and Lotus japonicus (bird’s foot trefoil) are presented. The importance of metabolic channelling of toxic intermediates as mediated by metabolon formation in avoiding unintended metabolic cross-talk and unwanted pleiotropic effects is emphasized. Likewise, the potential of metabolic engineering of plant secondary metabolism as a tool to elucidate, for example, the impact of secondary metabolites on plant–insect interactions is demonstrated.  相似文献   

16.
The restricted distributions of some classes of secondary metabolites in the angiosperms make them valuable taxonomic characters in assessing systematic relationships at higher levels of classification. Yet, for several reasons, secondary metabolites have not, until recently, been widely used as taxonomic characters above the family level. In this paper, the distributions of a number of classes of secondary compounds are discussed with reference to four recently published systems of higher angiosperm classification: Cronquist's of 1981, Dahlgren's of 1980, Takhtajan's of 1980 and Thome's of 1981. Some of the problems faced in choosing and using secondary metabolite data for systematic purposes (including the effects of our increasing understanding of their functional significance) are covered as well. Among the classes of secondary compounds treated here, benzylisoquinoline alkaloids, iridoids and be–talains are shown to be the most important systematic markers used at present at higher levels of classification, although glucosinolates, polyacetylenes and some other types of alkaloids are also demonstrated to be valuable criteria for making taxonomic judgments above the family rank. In addition, certain terpenoids, flavonoids, phenolics, cyanogenic glycosides and non–protein amino acids are illustrated to be of systematic use in particular cases.  相似文献   

17.
Ring hydroxylating dioxygenases (RHDOs) are one of the most important classes of enzymes featuring in the microbial metabolism of several xenobiotic aromatic compounds. One such RHDO is benzenetriol dioxygenase (BtD) which constitutes the metabolic machinery of microbial degradation of several mono- phenolic and biphenolic compounds including nitrophenols. Assessment of the natural diversity of benzenetriol dioxygenase (btd) gene sequence is of great significance from basic as well as applied study point of view. In the present study we have evaluated the gene sequence variations amongst the partial btd genes that were retrieved from microorganisms enriched for PNP degradation from pesticide contaminated agriculture soils. The gene sequence analysis was also supplemented with an in silico restriction digestion analysis. Furthermore, a phylogenetic analysis based on the deduced amino acid sequence(s) was performed wherein the evolutionary relatedness of BtD enzyme with similar aromatic dioxygenases was determined. The results obtained in this study indicated that this enzyme has probably undergone evolutionary divergence which largely corroborated with the taxonomic ranks of the host microorganisms.  相似文献   

18.
Zagrobelny M  Møller BL 《Phytochemistry》2011,72(13):1585-1592
Cyanogenic glucosides are important components of plant defense against generalist herbivores due to their bitter taste and the release of toxic hydrogen cyanide upon tissue disruption. Some specialized herbivores, especially insects, preferentially feed on cyanogenic plants. Such herbivores have acquired the ability to metabolize cyanogenic glucosides or to sequester them for use in their own predator defense. Burnet moths (Zygaena) sequester the cyanogenic glucosides linamarin and lotaustralin from their food plants (Fabaceae) and, in parallel, are able to carry out de novo synthesis of the very same compounds. The ratio and content of cyanogenic glucosides is tightly regulated in the different stages of the Zygaena filipendulae lifecycle and the compounds play several important roles in addition to defense. The transfer of a nuptial gift of cyanogenic glucosides during mating of Zygaena has been demonstrated as well as the possible involvement of hydrogen cyanide in male assessment and nitrogen metabolism. As the capacity to de novo synthesize cyanogenic glucosides was developed independently in plants and insects, the great similarities of the pathways between the two kingdoms indicate that cyanogenic glucosides are produced according to a universal route providing recruitment of the enzymes required. Pyrosequencing of Z. filipendulae larvae de novo synthesizing cyanogenic glucosides served to provide a set of good candidate genes, and demonstrated that the genes encoding the pathway in plants and Z. filipendulae are not closely related phylogenetically. Identification of insect genes involved in the biosynthesis and turn-over of cyanogenic glucosides will provide new insights into biological warfare as a determinant of co-evolution between plants and insects.  相似文献   

19.
Cyanogenesis in plants and arthropods   总被引:1,自引:0,他引:1  
Cyanogenic glucosides are phytoanticipins known to be present in more than 2500 plant species. They are regarded as having an important role in plant defense against herbivores due to bitter taste and release of toxic hydrogen cyanide upon tissue disruption, but recent investigations demonstrate additional roles as storage compounds of reduced nitrogen and sugar that may be mobilized when demanded for use in primary metabolism. Some specialized herbivores, especially insects, preferentially feed on cyanogenic plants. Such herbivores have acquired the ability to metabolize cyanogenic glucosides or to sequester them for use in their own defense against predators. A few species of arthropods (within diplopods, chilopods and insects) are able to de novo biosynthesize cyanogenic glucosides and some are able to sequester cyanogenic glucosides from their food plant as well. This applies to larvae of Zygaena (Zygaenidae). The ratio and content of cyanogenic glucosides is tightly regulated in Zygaena filipendulae, and these compounds play several important roles in addition to defense in the life cycle of Zygaena. The transfer of a nuptial gift of cyanogenic glucosides during mating of Zygaena has been demonstrated as well as the involvement of hydrogen cyanide in male attraction and nitrogen metabolism. As more plant and arthropod species are examined, it is likely that cyanogenic glucosides are found to be more widespread than formerly thought and that cyanogenic glucosides are intricately involved in many key processes in the life cycle of plants and arthropods.  相似文献   

20.
In many seed species, the major source of HCN evolved during water imbibition is cyanogenic glycosides. The present investigation was performed to elucidate the role of endogenous cyanogenic glycosides in the control of seed germination and to examine the involvment of β-glucosidase in this process. All seed species used here contained some activities of β-glucosidase already in the dry state before imbibition. in the decreasing order of Malus pumila, Daucus carota, Hordeum vulgare, Chenopodium album and so on. β-Gluosidase activity in upper and lower seeds of cocklebur (Xanthium pennsylvanicum Wallr.) decreased with imbibition, and in lower seeds the activity disappeared when they germinated. On the contrary, in caryopses of rice (Oryza sativa L. cv. Sasanishiki) β-glucosidase increased during imbibition, and this increase continued even after germination. β-Glucosidase in cocklebur seeds was more active in the axial than in the cotyledonary tissue. Amygdalin, prunasin and linamarin could all serve as substrattes for the β-glucosidase(s) from both cocklebur and rice. Amygdalin, prunasin and linamarin as well as KCN, were effective in stimulating the germination of upper cocklebur seeds. The seeds evolved much more free HCN gas when they were exposed to the cyanogenic glycosides than when the glycosides were absent. Moreover, the application of the cyanogenic glycosides or of KCN caused accumulation of bound HCN in the seeds. Carbon monoxide, which stimulated cocklebur seed germination only slightly, did not cause accumulation of bound HCN. We suggest that a balance between the cytochrome and the alternative respiration pathways, which is adequate for germination (Esashi et al. 1987. Plant Cell Physiol. 28: 141–150), may be brought about by the action of endogenous HCN; a large portion of which is liberated from cyanogenic glycosides via the action of β-glucosidase. In addition to the partial suppression of the cytochrome path and unlike carbon monoxide, the HCN thus produced may act to supply cyanide group(s) to unknown compounds necessary for germination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号