首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amyloid A protein (AA), the major fibril protein in AA-amyloidosis, is an N-terminal cleavage product of the precursor protein, serum amyloid A (SAA). Using mass spectrometry and amino-acid sequencing, we identified and characterized two novel AA protein subsets co-deposited as amyloid fibrils in an patient having AA-amyloidosis associated with rheumatoid arthritis. One of the AA proteins corresponded to positions 2-76 (or 75) of SAA2 alpha and the other corresponded to positions 2-76 (or 75) of known SAA1 subsets, except for position 52 or 57, where SAA1 alpha has valine and alanine and SAA1 beta has alanine and valine in position 52 and 57, respectively, whereas the AA protein had alanine at the both positions. Our findings (1), demonstrate that not only one but two SAA subsets could be deposited together as an AA-amyloid in a single individual and (2), support the existence of a novel SAA1 allotype, i.e., SAA152,57Ala.  相似文献   

2.
The nucleotide sequences of two mink serum amyloid A (SAA) cDNA clones have been analyzed, one (SAA1) 776 base pairs long and the other (SAA2) 552 base pairs long. Significant differences were discovered when derived amino acid sequences were compared with data for apoSAA isolated from high density lipoprotein. Previous studies of mink protein SAA and amyloid protein A (AA) suggest that only one SAA isotype is amyloidogenic. The cDNA clone for SAA2 defines the "amyloid prone" isotype while SAA1 is found only in serum. Mink SAA1 has alanine in position 10, isoleucine in positions 24, 67, and 71, lysine in position 27, and proline in position 105. Residue 10 in mink SAA2 is valine while arginine and asparagine are at positions 24 and 27, respectively, all characteristics of protein AA isolated from mink amyloid fibrils. Mink SAA2 also has valine in position 67, phenylalanine in position 71, and amino acid 105 is serine. It remains unknown why these six amino acid substitutions render SAA2 more amyloidogenic than SAA1. Eighteen hours after lipopolysaccharide stimulation, mink SAA mRNA is abundant in liver with relatively minor accumulations in brain and lung. Genes encoding both SAA isotypes are expressed in all three organs while no SAA mRNA was detectable in amyloid prone organs, including spleen and intestine, indicating that deposition of AA from locally synthesized SAA is unlikely. A third mRNA species (2.2 kilobases) was identified and hybridizes with cDNA probes for mink SAA1 and SAA2. In addition to a major primary translation product (molecular mass 14,400 Da) an additional product with molecular mass 28,000 Da was immunoprecipitable.  相似文献   

3.
Serum amyloid A (SAA) is a multifunctional acute‐phase protein whose natural role seems to be participation in many physiologic and pathological processes. Prolonged increased SAA level in a number of chronic inflammatory and neoplastic diseases gives rise to reactive systemic amyloid A amyloidosis, where the N‐terminal 76‐amino acid residue‐long segment of SAA is deposited as amyloid fibrils. Recently, a specific interaction between SAA and the ubiquitous inhibitor of cysteine proteases—human cystatin C (hCC)—has been described. Here, we report further evidence corroborating this interaction, and the identification of the SAA and hCC binding sites in the SAA–hCC complex, using a combination of selective proteolytic excision and high‐resolution mass spectrometry. The shortest binding site in the SAA sequence was determined as SAA(86–104), whereas the binding site in hCC sequence was identified as hCC(96–102). Binding specificities of both interacting sequences were ascertained by affinity experiments (ELISA) and by registration of mass spectrum of SAA–hCC complex. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Secondary amyloid A (AA) amyloidosis is an important complication of some chronic inflammatory diseases, primarily rheumatoid arthritis (RA). It is a serious, potentially life‐threatening disorder caused by the deposition of AA fibrils, which are derived from the circulatory, acute‐phase‐reactant, serum amyloid A protein (SAA). Recently, a specific interaction between SAA and the ubiquitous inhibitor of cysteine proteases—human cystatin C (hCC)—has been proved. Using a combination of selective proteolytic excision and high‐resolution mass spectrometry, the binding sites in the SAA and hCC sequences were assessed as SAA(86–104) and hCC(96–102), respectively. Here, we report further details concerning the hCC–SAA interaction. With the use of affinity tests and florescent ELISA‐like assays, the amino acid residues crucial for the protein interaction were determined. It was shown that all amino acid residues in the SAA sequence, essential for the formation of the protein complex, are basic ones, which suggests an electrostatic interaction character. The idea is corroborated by the fact that the most important residues in the hCC sequence are Ser‐98 and Tyr‐102; these residues are able to form hydrogen bonds via their hydroxyl groups. The molecular details of hCC–SAA complex formation might be helpful for the design of new compounds modulating the biological role of both proteins. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Summary Serum amyloid A (SAA), an acute-phase reactant, exists naturally as a minor protein in the sera of healthy individuals. However, its levels in sera are increased markedly during various transient and chronic inflammatory diseases, often concomitantly with accumulation at inflicted sites. SAA is synthesized mainly in the liver following the synergistic action of cytokines, mainly tumor necrosis factor-α (TNF-α) and interleukin-1 and-6 (IL-1 and IL-6). It was already shown by us that upon interaction with SAA or amyloid A (AA), the extracellular matrix (ECM) and laminin induced the adhesion of resting human CD4+ T-cells in an apparently β1-integrin-mediated manner. Herein we have shown that the SAA-ECM complex modulates the regulation of cytokine synthesis by human T-lymphocytes. The SAA-ECM complex dramatically enhanced the release of TNF-α by human T-cells in a dose-dependent manner, reaching its maximal effect in the presence of 100 μM recombinant SAA. The SAA domain, responsible for the enhanced release of TNF-α by human T-lymphocytes, is apparently the amyloid A protein (AA, i.e. SAA2-82). Specifically, TNF-α enhanced secretion is mediated through intimate interactions of SAA/AA, with laminin. Thus, the ECM serving as a temporary anchorage site for SAA and AA seems to be involved in regulating TNF-α secretion and the recruitment and accumulation of immunocytes in extravascular, inflammatory compartments.  相似文献   

6.
Amyloid A (AA) amyloidosis occurs spontaneously in many mammals and birds, but the prevalence varies considerably among different species, and even among subgroups of the same species. The Blue fox and the Gray fox seem to be resistant to the development of AA amyloidosis, while Island foxes have a high prevalence of the disease. Herein, we report on the identification of AA amyloidosis in the Red fox (Vulpes vulpes). Edman degradation and tandem MS analysis of proteolyzed amyloid protein revealed that the amyloid partly was composed of full‐length SAA. Its amino acid sequence was determined and found to consist of 111 amino acid residues. Based on inter‐species sequence comparisons we found four residue exchanges (Ser31, Lys63, Leu71, Lys72) between the Red and Blue fox SAAs. Lys63 seems unique to the Red fox SAA. We found no obvious explanation to how these exchanges might correlate with the reported differences in SAA amyloidogenicity. Furthermore, in contrast to fibrils from many other mammalian species, the isolated amyloid fibrils from Red fox did not seed AA amyloidosis in a mouse model.  相似文献   

7.
Serum amyloid A (SAA) is a precursor for the amyloid A in AA type of amyloidosis. Distribution of mast cells in tissues is similar to the distribution of amyloid deposits in secondary AA-amyloidosis. Therefore, we studied whether mast cells could be involved in SAA metabolism. Human mast cell line (HMC-1) cells were cultured with recombinant human apoSAA (rhSAA), and the production of tumour necrosis factor (TNF)-alpha and interleukin (IL)-1 beta was determined by ELISA. RhSAA and human SAA (huSAA) were incubated with human chymase, tryptase or with intact human mast cell (huMC) in cultures, and degradation of SAA was followed by gel electrophoresis, liquid chromatography and mass spectrometry. SAA induced dose-dependent production of TNF-alpha and IL-1 beta in HMC-1 cells. Tryptase, chymase, and huMC granules degraded efficiently the SAA protein. Degradation of SAA by tryptase, but not by chymase, released a highly amyloidogenic N-terminal fragment of SAA. Finally, incubation of huMC with rhSAA alone resulted in degradation of SAA and formation of protofibrillar intermediates. These results suggest a pathogenic role for mast cells in AA-amyloidosis.  相似文献   

8.
Serum amyloid A1 (SAA1) is an apolipoprotein that binds to the high‐density lipoprotein (HDL) fraction of the serum and constitutes the fibril precursor protein in systemic AA amyloidosis. We here show that HDL binding blocks fibril formation from soluble SAA1 protein, whereas internalization into mononuclear phagocytes leads to the formation of amyloid. SAA1 aggregation in the cell model disturbs the integrity of vesicular membranes and leads to lysosomal leakage and apoptotic death. The formed amyloid becomes deposited outside the cell where it can seed the fibrillation of extracellular SAA1. Our data imply that cells are transiently required in the amyloidogenic cascade and promote the initial nucleation of the deposits. This mechanism reconciles previous evidence for the extracellular location of deposits and amyloid precursor protein with observations the cells are crucial for the formation of amyloid.  相似文献   

9.
Human serum amyloid A (SAA) is a precursor protein of the amyloid fibrils that are responsible for AA amyloidosis. Of the four human SAA genotypes, SAA1 is most commonly associated with AA amyloidosis. Furthermore, SAA1 has three major isoforms (SAA1.1, 1.3, and 1.5) that differ by single amino acid variations at two sites in their 104-amino acid sequences. In the present study, we examined the effect of amino acid variations in human SAA1 isoforms on the amyloidogenic properties. All SAA1 isoforms adopted α-helix structures at 4 °C, but were unstructured at 37 °C. Heparin-induced amyloid fibril formation of SAA1 was observed at 37 °C, as evidenced by the increased thioflavin T (ThT) fluorescence and β-sheet structure formation. Despite a comparable increase in ThT fluorescence, SAA1 molecules retained their α-helix structures at 4 °C. At both temperatures, no essential differences in ThT fluorescence and secondary structures were observed among the SAA1 isoforms. However, the fibril morphologies appeared to differ; SAA1.1 formed long and curly fibrils, whereas SAA1.3 formed thin and straight fibrils. The peptides corresponding to the central regions of the SAA1 isoforms containing amino acid variations showed distinct amyloidogenicities, reflecting their direct effects on amyloid fibril formation. These findings may provide novel insights into the influence of amino acid variations in human SAA on the pathogenesis of AA amyloidosis.  相似文献   

10.
To examine whether polymorphism at the SAA loci is associated with the development of amyloid protein A (AA)-amyloidosis, we determined the genotypes at the SAA1 and SAA2 loci in 43 AA-amyloidosis patients (amyloidosis population) and 77 patients with rheumatoid arthritis (RA) who had been ill for less than 5 years (early RA population). We also compared the frequencies of the genotypes at the SAA1 locus among 90 Korean, 95 Taiwanese, and 103 Japanese healthy subjects. The frequencies of the gamma/gamma genotype and gamma alleles at the SAA1 locus were significantly higher in the amyloidosis population than in the early RA population (34.9% versus 7.8%, and 58.1% versus 33.8%, chi2 test P=0.0001). The frequencies of the gamma allele at the SAA1 locus in Koreans, Taiwanese, and Japanese were 41.6%, 35.6%, and 37.4%, respectively. The length of the latent period of AA-amyloidosis was significantly longer in the patients with smaller numbers of the gamma allele at the SAA1 locus (Spearman's correlation coefficient: -0.42, P<0.05). On the other hand, the mean C-reactive protein (CRP) level during 2 years prior to the diagnosis of AA-amyloidosis was significantly higher in the patients with larger numbers of the gamma allele at the SAA1 locus (Spearman's correlation coefficient: 0.34, P<0.05). No significant association was found between amyloidosis and polymorphism at the SAA2 locus. We postulate that the allele SAA1gamma renders an RA patient susceptible to amyloidosis, possibly by affecting the severity of inflammation in RA.  相似文献   

11.
The amyloidoses comprise a heterogeneous group of diseases in which 1 out of more than 25 human proteins aggregates into characteristic beta-sheet fibrils with some unique properties. Aggregation is nucleation dependent. Among the known amyloid-forming constituents is the prion protein, well known for its ability to transmit misfolding and disease from one individual to another. There is increasing evidence that other amyloid forms also may be transmissible but only if certain prerequisites are fulfilled. One of these forms is systemic AA-amyloidosis in which an acute-phase reactant, serum AA, is over-expressed and, possibly after cleavage, aggregates into amyloid fibrils, causing disease. In a mouse model, this disorder can easily be transmitted from one animal to another both by intravenous and oral routes. Also, synthetic amyloid-like fibrils made from defined small peptides have this property, indicating a prion-like transmission mechanism. Even some fibrils occurring in the environment can transmit AA-amyloidosis in the murine model. AA-amyloidosis is particularly common in certain areas of Papua New Guinea, probably due to the endemicity of malaria and perhaps genetic predisposition. Now, when kuru is disappearing, more interest should be focused on the potentially lethal systemic AA-amyloidosis.  相似文献   

12.
We reported an integrated platform to explore serum protein variant pattern in cancer and its utility as a new class of biomarker panel for diagnosis. On the model study of serum amyloid A (SAA), we employed nanoprobe‐based affinity mass spectrometry for enrichment, identification and quantitation of SAA variants from serum of 105 gastric cancer patients in comparison with 54 gastritis patients, 54 controls, and 120 patients from other cancer. The result revealed surprisingly heterogeneous and most comprehensive SAA bar code to date, which comprises 24 SAA variants including SAA1‐ and SAA2‐encoded products, polymorphic isoforms, N‐terminal–truncated forms, and three novel SAA oxidized isotypes, in which the variant‐specific peptide sequence were also confirmed by LC‐MS/MS. A diagnostic model was developed for dimension reduction and computational classification of the 24 SAA‐variant bar code, providing good discrimination (AUC = 0.85 ± 3.2E?3) for differentiating gastric cancer group from gastritis and normal groups (sensitivity, 0.76; specificity, 0.81) and was validated with external validation cohort (sensitivity, 0.71; specificity, 0.74). Our platform not only shed light on the occurrence and modification extent of under‐represented serum protein variants in cancer, but also suggested a new concept of diagnostic platform by serum protein variant profile.  相似文献   

13.
Polymorphism of tissue and serum amyloid A (AA and SAA) proteins in the mouse   总被引:12,自引:0,他引:12  
Amino acid sequence studies of the amino terminal 25 residues of amyloid A (AA) protein and the serum precursor (SAA) induced with casein or LPS indicate differences in the sequence at position 6 and significant heterogeneity at several other positions in SAA. These findings suggest that SAA is a polymorphic serum protein and raise the possibility that only certain forms of SAA are processed to the tissue amyloid fibril.  相似文献   

14.
    
Serum amyloid A (SAA), an acute-phase reactant, exists naturally as a minor protein in the sera of healthy individuals. However, its levels in sera are increased markedly during various transient and chronic inflammatory diseases, often concomitantly with accumulation at inflicted sites. SAA is synthesized mainly in the liver following the synergistic action of cytokines, mainly tumor necrosis factor- (TNF-) and interleukin-1 and -6 (IL-1 and IL-6). It was already shown by us that upon interaction with SAA or amyloid A (AA), the extracellular matrix (ECM) and laminin induced the adhesion of resting human CD4+ T-cells in an apparently 1-integrin-mediated manner. Herein we have shown that the SAA–ECM complex modulates the regulation of cytokine synthesis by human T-lymphocytes. The SAA–ECM complex dramatically enhanced the release of TNF- by human T-cells in a dose-dependent manner, reaching its maximal effect in the presence of 100 M recombinant SAA. The SAA domain, responsible for the enhanced release of TNF- by human T-lymphocytes, is apparently the amyloid A protein (AA, i.e. SAA2–82). Specifically, TNF- enhanced secretion is mediated through intimate interactions of SAA/AA, with laminin. Thus, the ECM serving as a temporary anchorage site for SAA and AA seems to be involved in regulating TNF- secretion and the recruitment and accumulation of immunocytes in extravascular, inflammatory compartments.  相似文献   

15.
B Wang  YX Tan  J Jia  A Digre  X Zhang  I Vlodavsky  JP Li 《PloS one》2012,7(7):e39899
AA-amyloidosis is a disease characterized by abnormal deposition of serum A amyloid (SAA) peptide along with other components in various organs. The disease is a complication of inflammatory conditions that cause persistent high levels of the acute phase reactant SAA in plasma. In experimental animal models, the deposited amyloid is resolved when the inflammation is stopped, suggesting that there is an efficient clearance mechanism for the amyloid. As heparan sulfate (HS) is one of the major components in the amyloid, its metabolism is expected to affect the pathology of AA amyloidosis. In this study, we investigated the effect of heparanase, a HS degradation enzyme, in resolution of the AA amyloid. The transgenic mice deficient in heparanase (Hpa-KO) produced a similar level of SAA in plasma as the wildtype control (Ctr) mice upon induction by injection of AEF (amyloid enhancing factor) and inflammatory stimuli. The induction resulted in formation of SAA amyloid 7-days post treatment in the spleen that displayed a comparable degree of amyloid load in both groups. The amyloid became significantly less in the Hpa-KO spleen than in the Ctr spleen 10-days post treatment, and was completely resolved in the Hpa-KO spleen on day 21 post induction, while a substantial amount was still detected in the Ctr spleen. The rapid clearance of the amyloid in the Hpa-KO mice can be ascribed to upregulated matrix metalloproteases (MMPs) that are believed to contribute to degradation of the protein components in the AA amyloid. The results indicate that both heparanase and MMPs play important parts in the pathological process of AA amyloidosis.  相似文献   

16.
Chen SH  Liao HK  Chang CY  Juo CG  Chen JH  Chan SI  Chen YJ 《Proteomics》2007,7(17):3038-3050
Development of a rapid, effective, and highly specific platform for target identification in complex biofluids is one of the most important tasks in proteomic research. Taking advantage of the natural hydrophobic interaction of PVDF with probe protein, a simple and effective method was developed for protein quantitation and profiling. Using antibody-antigen interactions as a proof-of-concept system, the targeted plasma proteins, serum amyloid P (SAP), serum amyloid A (SAA), and C-reactive protein (CRP), could be selectively isolated and enriched from human plasma by antibody-immobilized PVDF membrane and directly identified by MALDI-TOF MS without additional elution step. The approach was successfully applied to human plasma for rapid quantitation and variant screening of SAP, SAA, and CRP in healthy individuals and patients with gastric cancer. The triplexed on-probe quantitative analysis revealed significant overexpression of CRP and SAA in gastric cancer group, consistent with parallel ELISA measurements and pathological progression and prognostic significance reported in previous literatures. Furthermore, the variant mass profiling of the post-translationally modified forms revealed a high occurrence of de-sialic acid SAP in patients with gastric cancer. Due to the versatile assay design, ease of probe preparation without chemical synthesis, and compatibility with MALDI-TOF MS analysis, the methodology may be useful for target protein characterization, functional proteomics, and screening in clinical proteomics.  相似文献   

17.
Serum amyloid A (SAA) is a multifunctional acute‐phase protein whose concentration in serum increases markedly following a number of chronic inflammatory and neoplastic diseases. Prolonged high SAA level may give rise to reactive systemic amyloid A (AA) amyloidosis, where the N‐terminal segment of SAA is deposited as amyloid fibrils. Besides, recently, well‐documented association of SAA with high‐density lipoprotein or glycosaminoglycans, in particular heparin/heparin sulfate (HS), and specific interaction between SAA and human cystatin C (hCC), the ubiquitous inhibitor of cysteine proteases, was proved. Using a combination of selective proteolytic excision and high‐resolution mass spectrometry, a hCC binding site in the SAA sequence was determined as SAA(86–104). The role of this SAA C‐terminal fragment as a ligand‐binding locus is still not clear. It was postulated important in native SAA folding and in pathogenesis of AA amyloidosis. In the search of conformational details of this SAA fragment, we did its structure and affinity studies, including its selected double/triple Pro→Ala variants. Our results clearly show that the SAA(86–104) 19‐peptide has rather unordered structure with bends in its C‐terminal part, which is consistent with the previous results relating to the whole protein. The results of affinity chromatography, fluorescent ELISA‐like test, CD and NMR studies point to an importance of proline residues on structure of SAA(86–104). Conformational details of SAA fragment, responsible for hCC binding, may help to understand the objective of hCC–SAA complex formation and its importance for pathogenesis of reactive amyloid A amyloidosis. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
1. The complete amino acid sequences of canine and feline amyloid A (AA) proteins were determined and compared with the sequence of human AA protein. 2. The dog and cat AA proteins were 84% homologous with human AA through residue 69. 3. Between the residues which correspond to 69 and 70 in the human sequence, the dog and cat proteins had an insertion of eight amino acids after which homology with human AA resumed. 4. While human AA commonly ends at position 76, the carboxyl termini of dog and cat AA proteins corresponded to position 86 in the sequence of the precursor protein-serum amyloid A. 5. These results are particularly interesting with respect to evolution of the serum amyloid A gene family.  相似文献   

19.
Amyloid A (AA) amyloidosis is a debilitating, often fatal, systemic amyloid disease associated with chronic inflammation and persistently elevated serum amyloid A (SAA). Elevated SAA is necessary but not sufficient to cause disease and the risk factors for AA amyloidosis remain poorly understood. Here we identify an extraordinarily high prevalence of AA amyloidosis (34%) in a genetically isolated population of island foxes (Urocyon littoralis) with concurrent chronic inflammatory diseases. Amyloid deposits were most common in kidney (76%), spleen (58%), oral cavity (45%), and vasculature (44%) and were composed of unbranching, 10 nm in diameter fibrils. Peptide sequencing by mass spectrometry revealed that SAA peptides were dominant in amyloid-laden kidney, together with high levels of apolipoprotein E, apolipoprotein A-IV, fibrinogen-α chain, and complement C3 and C4 (false discovery rate ≤0.05). Reassembled peptide sequences showed island fox SAA as an 111 amino acid protein, most similar to dog and artic fox, with 5 unique amino acid variants among carnivores. SAA peptides extended to the last two C-terminal amino acids in 5 of 9 samples, indicating that near full length SAA was often present in amyloid aggregates. These studies define a remarkably prevalent AA amyloidosis in island foxes with widespread systemic amyloid deposition, a unique SAA sequence, and the co-occurrence of AA with apolipoproteins.  相似文献   

20.
Spongiform encephalopathies have been reported to be transmitted by blood transfusion even prior to the clinical onset. Experimental AA-amyloidosis shows similarities with prion disease and amyloid-containing organ-extracts can prime a recipient for the disease. In this systemic form of amyloidosis N-terminal fragments of the acute-phase reactant apolipoprotein serum amyloid A are the main amyloid protein. Initial amyloid deposits appear in the perifollicular region of the spleen, followed by deposits in the liver. We used the established murine model and induced AA-amyloidosis in NMRI mice by intravenous injections of purified amyloid fibrils ('amyloid enhancing factor') combined with inflammatory challenge (silver nitrate subcutaneously). Blood plasma and peripheral blood monocytes were isolated, sonicated and re-injected into new recipients followed by an inflammatory challenge during a three week period. When the animals were sacrificed presence of amyloid was analyzed in spleen sections after Congo red staining. Our result shows that some of the peripheral blood monocytes, isolated from animals with detectable amyloid, contained amyloid-seed that primed for AA-amyloid. The seeding material seems to have been phagocytosed by the cells since the AA-precursor (SAA1) was found not be expressed by the monocytes. Plasma recovered from mice with AA amyloidosis lacked seeding capacity. Amyloid enhancing activity can reside in monocytes recovered from mice with AA-amyloidosis and in a prion-like way trigger amyloid formation in conjunction with an inflammatory disorder. Human AA-amyloidosis resembles the murine form and every individual is expected to be exposed to conditions that initiate production of the acute-phase reactant. The monocyte-transfer mechanism should be eligible for the human disease and we point out blood transfusion as a putative route for transfer of amyloidosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号