首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The expression of the inducible haem oxygenase (HO-1) gene was examined in different skeletal muscles. Rats were treated with haemin and a time course of HO-1 mRNA expression was determined in soleus and extensor digitorum longus (EDL) muscles. Fibre type composition and tissue myoglobin content were also measured. We found that HO-1 mRNA expression markedly increased in soleus (type I fibres) muscle but was only slightly affected in EDL (type II fibres). HO-1 expression directly correlated with both percentage of red fibres and tissue myoglobin. These data demonstrate that HO-1 gene expression follows a fibre type-specific pattern which might indicate an important role for this protein in the maintenance of skeletal muscle function.  相似文献   

2.
Senile muscles of the rat (28-36 months) show loss of overall activity of glycolytic and aerobic enzymes. However, there is a differential loss and shift of enzyme activity pattern in the three types of muscles. The extensor digitorum longus (EDL) and diaphragm show a decrease of ratios of glycolytic to aerobic-oxidative enzymes. This shift to a more oxidative type of metabolism is not observed in the soleus muscle. Decrease of enzyme activities is least marked in the diaphragm muscle. Biochemical analysis shows a trend to levelling out of metabolic differences between the different muscle types. This trend of 'dedifferentiation' is most marked when comparing EDL and soleus, least marked when comparing EDL and diaphragm muscle. The histochemical analysis shows a shift from the original mixed to a more uniform pattern of muscle fibres in the EDL and soleus muscle; this levelling-out of differences between enzymatic activities of different muscle fibres is not observed in the diaphragm muscle. Preferential atrophy and loss of ATPase activity in II muscle fibres in the soleus muscle and the occurrence of 'type grouping' are further characteristic features of senile muscle change. The findings show general (i.e. loss of enzyme activities) and differential trends of biochemical and histochemical enzyme changes in different types of muscles.  相似文献   

3.
In this study we have shown that the skeletal muscle fibres from adult (older than 26 weeks) mdx mice have gross structural deformities. We have characterized the onset and age dependence of this feature in mdx mice. The three dimensional structure of these deformities has been visualized in isolated fibres and the orientation of these deformities was determined within the muscle by confocal laser scanning microscopy. We have also shown that the occurrence of morphologically abnormal fibres is greater in muscles with longer fibres (extensor digitorum longus (EDL) and soleus, 6-7.3 mm long), than in muscles with shorter fibres (flexor digitorum brevis (FDB), 0.3-0.4 mm long). A population of post-degenerative fibres, with both central and peripheral nuclei coexistent along the length of the fibre, has also been identified in the muscles studied. We showed that a mild protocol of lengthening (eccentric) contractions (the muscle was stretched by 12% during a tetanic contraction) caused a major reduction in the maximal tetanic force subsequently produced by mdx EDL muscle. In contrast, maximal tetanic force production in normal soleus, normal EDL and mdx soleus muscles was not altered by this protocol. We suggest that the deformed fast glycolytic fibres which are found in adult mdx EDL but not in adult mdx soleus muscles are the population of fibres damaged by the lengthening protocol.  相似文献   

4.
Hyperammonemia is considered to be the main cause of decreased levels of the branched-chain amino acids (BCAA), valine, leucine, and isoleucine, in liver cirrhosis. In this study we investigated whether the decrease in BCAA is caused by the direct effect of ammonia on BCAA metabolism and the effect of ammonia on BCAA and protein metabolism in different types of skeletal muscle. M. soleus (SOL, slow-twitch, red muscle) and m. extensor digitorum longus (EDL, fast-twitch, white muscle) of white rat were isolated and incubated in a medium with or without 500 μM ammonia. We measured the exchange of amino acids between the muscle and the medium, amino acid concentrations in the muscle, release of branched-chain keto acids (BCKA), leucine oxidation, total and myofibrillar proteolysis, and protein synthesis. Hyperammonemia inhibited the BCAA release (81% in SOL and 60% in EDL vs. controls), increased the release of BCKA (133% in SOL and 161% in EDL vs. controls) and glutamine (138% in SOL and 145% in EDL vs. controls), and increased the leucine oxidation in EDL (174% of controls). Ammonia also induced a significant increase in glutamine concentration in skeletal muscle. The effect of ammonia on intracellular BCAA concentration, protein synthesis and on total and myofibrillar proteolysis was insignificant. The data indicates that hyperammonemia directly affects the BCAA metabolism in skeletal muscle which results in decreased levels of BCAA in the extracellular fluid. The effect is associated with activated synthesis of glutamine, increased BCAA oxidation, decreased release of BCAA, and enhanced release of BCKA. These metabolic changes are not directly associated with marked changes in protein turnover. The effect of ammonia is more pronounced in muscles with high content of white fibres.  相似文献   

5.
《Cell calcium》1996,20(1):73-82
We have presented an assay for measuring the rate of sarcoplasmic reticulum (SR) Ca2+ uptake and Ca2+ release in skeletal muscle homogenates using the fluorescent Ca2+ probe Fura-2. Using this assay, we investigated the effects of an elevated temperature (40°C) and lowered pH (6.8), two factors proposed to be involved in skeletal muscle fatigue, on SR Ca2+ uptake. The EDL muscle was found to have a higher rate of Ca2+ uptake than the soleus (34%). Exposure of the muscles to a raised temperature, but not a reduced pH, resulted in a reduction in the rate of Ca2+ uptake in both the EDL and soleus homogenates. This uptake process was blocked by cyclopiazonic acid (CPA) a specific inhibitor of the major transport protein of the sarcoplasmic reticulum, the Ca2+-ATPase. Calcium release was induced using AgNO3 after loading of the vesicles during the uptake process. It was found that AgNO3 was only effective in producing Ca2+ release in the EDL muscles. The soleus muscles did not release Ca2+ under varying [Mg2+] or with Hg2+ substitution for Ag+, suggesting that fast- and slow-twitch muscle fibres require different conditions for maximum Ca2+-release, or that different isoforms of the Ca2+ release channels are present in the different fibres.  相似文献   

6.
Calcitonin gene-related peptide (CGRP) occurs only in some motoneurons. In this study, the presence of CGRP in motor endplates in relation to muscle fibre types was examined in slow (soleus muscle) and fast [tibialis anterior (TA) and extensor digitorum longus (EDL)] leg muscles of the rat. CGRP was detected by use of immunohistochemical methods, and staining for the mitochondrial-bound enzyme NADH-TR was used for demonstration of fibre types. The fibres showing low NADH-TR activity were interpreted as representing IIB fibres. All such fibres located in the superficial portion of TA were innervated by endplates displaying CGRP-like immunoreactivity (LI), whereas in the deep portion of TA some of these fibres lacked CGRP-LI at their endplates. Thirty per cent of the IIB fibres in EDL showed CGRP-LI at the endplates. All fibres in TA and EDL displaying high NADH-TR activity and interpreted as type-IIA fibres, lacked CGRP-LI in their motor innervation. One third of the fibres with intermediate NADH-TR activity in TA exhibited CGRP-LI at their endplates, whereas in EDL only few such fibres displayed CGRP-LI in the endplate formation. These fibres are likely to belong to type-IIX or type-I motor units. CGRP-LI was very rarely detected at the endplates in the soleus muscle. These observations show that distinct differences exist between the slow muscle, soleus, and the fast muscles, TA and EDL, but that there are also differences between the different types of fibres in TA and EDL with respect to presence of CGRP-LI at the endplates. As CGRP-LI was frequently detected at endplates of IIB fibres, it is likely that CGRP has a particular role related to the differentiation and maintenance of these fibres.  相似文献   

7.
We have investigated the physiological role of desmin in skeletal muscle by measuring isometric tension generated in skinned fibres and intact skeletal muscles from desmin knock-out (DES-KO) mice. About 80% of skinned single extensor digitorum longus (EDL) fibres from adult DES-KO mice generated tensions close to that of wild-type (WT) controls. Weights and maximum tensions of intact EDL but not of soleus (SOL) muscles were lowered in DES-KO mice. Repeated contractions with stretch did not affect subsequent isometric tension in EDL muscles of DES-KO mice. Tension during high frequency fatigue (HFF) declined faster and this deficiency was compensated in DES-KO EDL muscles by 5 mM caffeine which had no influence on HFF in WT EDL. Furthermore, caffeine evoked twitch potentiation was higher in DES-KO than in WT muscles. We conclude that desmin is not essential for acute tensile strength but rather for optimal activation of intact myofibres during E-C coupling.  相似文献   

8.
Since there are data to indicate that heavy exercise decreases insulin binding to skeletal muscle at a point when glucose uptake is known to be augmented, we tested the hypothesis that insulin-stimulated glucose uptake and metabolism are dissociated from insulin binding after exercise. Therefore, insulin binding, 2-deoxy-d-glucose (2-DOG) uptake and glucose incorporation into glycogen and glycolysis were compared in soleus and EDL muscles of intensively exercised (2-3 h) mice and non-exercised mice. Basal 2-DOG uptake was increased in the exercised EDL (P less than 0.05) but not in the exercised soleus (P greater than 0.05). However, in both muscles intense exercise increased insulin-stimulated (0.1-16 nM) 2-DOG uptake (P less than 0.05). The rates of glycogenesis were increased in both the exercised muscles (P less than 0.05) as was the rate of glycolysis in the exercise soleus (P less than 0.05). Glycolysis was not altered in the EDL (P greater than 0.05). In the face of the increased 2-DOG uptake and glucose metabolism in the exercised muscles, insulin binding was not altered in the exercised soleus muscle (P greater than 0.05) and was decreased in the exercised EDL (P less than 0.05). These results indicate that after intense exercise there is a dissociation of insulin binding from insulin action on glucose uptake and metabolism in skeletal muscles.  相似文献   

9.
Postnatal myoblasts, the satellite cells, originating from slow and fast skeletal muscle fibres differentiate and fuse into myotubes expressing different phenotype of myosin heavy chain (MyHC) isoforms. Little is known, however, of factors which establish and maintain this phenotypic diversity. We used immunofluorescent labelling and Western blotting to examine the expression of slow and fast MyHC isoforms in myotubes formed in vitro from satellite cells isolated from mouse fast twitch extensor digitorum longus (EDL) and slow twitch soleus muscles. Satellite cells were cultured in serum-rich growth medium promoting myoblast proliferation until cross-striated and self-contracting myotubes were formed. We report that in both cultures myotubes expressed slow as well as fast MyHC isoforms, but the level of slow MyHC was higher in soleus culture than in EDL culture. Hence, the pattern of expression of slow and fast MyHC was characteristic of the muscle fibre type from which these cells derive. These results support the concept of phenotypic diversity among satellite cells in mature skeletal muscles and suggest that this diversity is generated in vitro irrespectively of serum mitogens.  相似文献   

10.
Pleiotrophin (PTN) is a widespread cytokine involved in bone formation, neurite outgrowth, and angiogenesis. In skeletal muscle, PTN is upregulated during myogenesis, post-synaptic induction, and regeneration after crushing, but little is known regarding its effects on muscle function. Here, we describe the effects of PTN on the slow-twitch soleus and fast-twitch extensor digitorum longus (EDL) muscles in mice over-expressing PTN under the control of a bone promoter. The mice were maintained in normal loading or disuse condition, induced by hindlimb unloading (HU) for 14 days. Effects of exposition to near-zero gravity during a 3-months spaceflight (SF) into the Mice Drawer System are also reported. In normal loading, PTN overexpression had no effect on muscle fiber cross-sectional area, but shifted soleus muscle toward a slower phenotype, as shown by an increased number of oxidative type 1 fibers, and increased gene expression of cytochrome c oxidase subunit IV and citrate synthase. The cytokine increased soleus and EDL capillary-to-fiber ratio. PTN overexpression did not prevent soleus muscle atrophy, slow-to-fast transition, and capillary regression induced by SF and HU. Nevertheless, PTN exerted various effects on sarcolemma ion channel expression/function and resting cytosolic Ca2+ concentration in soleus and EDL muscles, in normal loading and after HU. In conclusion, the results show very similar effects of HU and SF on mouse soleus muscle, including activation of specific gene programs. The EDL muscle is able to counterbalance this latter, probably by activating compensatory mechanisms. The numerous effects of PTN on muscle gene expression and functional parameters demonstrate the sensitivity of muscle fibers to the cytokine. Although little benefit was found in HU muscle disuse, PTN may emerge useful in various muscle diseases, because it exerts synergetic actions on muscle fibers and vessels, which could enforce oxidative metabolism and ameliorate muscle performance.  相似文献   

11.
While endurance exercise training has been shown to enhance insulin action in skeletal muscle, the effects of high resistance strength training are less clear. The purpose of this study was to determine the rate of glucose uptake in skeletal muscle in which compensatory hypertrophy was induced by synergist muscle ablation. Basal and insulin mediated [3H] 2-deoxyglucose uptake were measured in soleus and EDL muscles using the perfused rat hindquarter preparation. Neither basal nor insulin mediated glucose uptake, when expressed per gram muscle, were enhanced in hypertrophied soleus muscles compared with control muscles, despite a twofold increase in mass (P less than 0.01). In the EDL, muscle mass increased 60% with synergist ablation (P less than 0.01), however insulin mediated glucose uptake was not different from that of control muscles. The basal rate of glucose uptake in hypertrophied EDL muscles was increased twofold over that of control muscles (P less than 0.05), possibly due to changes in neural input and/or loading. These results suggest that the stimulus for development of increased muscle mass is different from that for metabolic adaptations.  相似文献   

12.
Acute effects of free fatty acids (FFA) were investigated on: (1) glucose oxidation, and UCP-2 and -3 mRNA and protein levels in 1 h incubated rat soleus and extensor digitorium longus (EDL) muscles, (2) mitochondrial membrane potential in cultured skeletal muscle cells, (3) respiratory activity and transmembrane electrical potential in mitochondria isolated from rat skeletal muscle, and (4) oxygen consumption by anesthetized rats. Long-chain FFA increased both basal and insulin-stimulated glucose oxidation in incubated rat soleus and EDL muscles and reduced mitochondrial membrane potential in C2C12 myotubes and rat skeletal muscle cells. Caprylic, palmitic, oleic, and linoleic acid increased O2 consumption and decreased electrical membrane potential in isolated mitochondria from rat skeletal muscles. FFA did not alter UCP-2 and -3 mRNA and protein levels in rat soleus and EDL muscles. Palmitic acid increased oxygen consumption by anesthetized rats. These results suggest that long-chain FFA acutely lead to mitochondrial uncoupling in skeletal muscle.  相似文献   

13.
We have used a new approach to study the effects of overload on skeletal muscle phenotype in mice. The method used avoids any traumatising contact with muscles and the inflammatory reaction that this may provoke. Blocks of lead embedded in silicone were inserted under the skin of the lower part of the back. After 1 month, a 17% hypertrophy was found to have occurred in the tonic soleus muscle, but no change was observed in the fast-twitch extensor digitorum longus (EDL) muscle. The main effects on the contractile properties of the soleus muscle were a decrease in the tetanic relaxation rate and a reduction in the maximal velocity of shortening. Immunohistological analysis of the soleus muscles revealed an increase in the proportion of fibres that express myosin heavy chain (MHC) 1, from 54.2% to 73.9%, with a reduction in the proportion of MHC2a-positive fibres, from 45.8% to 30.2%. These changes were accompanied by an increase in the proportion of fibres that express the slow type of sarcoplasmic reticulum calcium pump (SERCA2a), from 61.8% to 84.7%. In EDL muscles, overload induced only minor changes. Thus, this method of overload affected the soleus muscle in particular. The observed changes in the control of muscle contraction were significantly larger than the changes in typical myofibrillar properties that were observed. These results indicate that there is a temporal dissociation between the relative expression of MHCs and SERCAs.  相似文献   

14.
Apoptosis Inducing Factor (AIF) is a highly conserved, ubiquitous flavoprotein localized in the mitochondrial intermembrane space. In vivo, AIF provides protection against neuronal and cardiomyocyte apoptosis induced by oxidative stress. Conversely in vitro, AIF has been demonstrated to have a pro-apoptotic role upon induction of the mitochondrial death pathway, once AIF translocates to the nucleus where it facilitates chromatin condensation and large scale DNA fragmentation. Given that the aif hypomorphic harlequin (Hq) mutant mouse model displays severe sarcopenia, we examined skeletal muscle from the aif hypomorphic mice in more detail. Adult AIF-deficient skeletal myofibers display oxidative stress and a severe form of atrophy, associated with a loss of myonuclei and a fast to slow fiber type switch, both in "slow" muscles such as soleus, as well as in "fast" muscles such as extensor digitorum longus, most likely resulting from an increase of MEF2 activity. This fiber type switch was conserved in regenerated soleus and EDL muscles of Hq mice subjected to cardiotoxin injection. In addition, muscle regeneration in soleus and EDL muscles of Hq mice was severely delayed. Freshly cultured myofibers, soleus and EDL muscle sections from Hq mice displayed a decreased satellite cell pool, which could be rescued by pretreating aif hypomorphic mice with the manganese-salen free radical scavenger EUK-8. Satellite cell activation seems to be abnormally long in Hq primary culture compared to controls. However, AIF deficiency did not affect myoblast cell proliferation and differentiation. Thus, AIF protects skeletal muscles against oxidative stress-induced damage probably by protecting satellite cells against oxidative stress and maintaining skeletal muscle stem cell number and activation.  相似文献   

15.
Acute effects of free fatty acids (FFA) were investigated on: (1) glucose oxidation, and UCP-2 and -3 mRNA and protein levels in 1 h incubated rat soleus and extensor digitorium longus (EDL) muscles, (2) mitochondrial membrane potential in cultured skeletal muscle cells, (3) respiratory activity and transmembrane electrical potential in mitochondria isolated from rat skeletal muscle, and (4) oxygen consumption by anesthetized rats. Long-chain FFA increased both basal and insulin-stimulated glucose oxidation in incubated rat soleus and EDL muscles and reduced mitochondrial membrane potential in C2C12 myotubes and rat skeletal muscle cells. Caprylic, palmitic, oleic, and linoleic acid increased O(2) consumption and decreased electrical membrane potential in isolated mitochondria from rat skeletal muscles. FFA did not alter UCP-2 and -3 mRNA and protein levels in rat soleus and EDL muscles. Palmitic acid increased oxygen consumption by anesthetized rats. These results suggest that long-chain FFA acutely lead to mitochondrial uncoupling in skeletal muscle.  相似文献   

16.
Calpains are Ca2+ cysteine proteases that have been proposed to be involved in the cytoskeletal remodeling and wasting of skeletal muscle. Cumulative evidence also suggests that β2-agonists can lead to skeletal muscle hypertrophy through a mechanism probably related to calcium-dependent proteolytic enzyme. The aim of our study was to monitor calpain activity as a function of clenbuterol treatment in both slow and fast phenotype rat muscles. For this purpose, for 21?days we followed the time course of the calpain activity and of the ubiquitous calpain 1 and 2 autolysis, as well as muscle remodeling in the extensor digitorum longus (EDL) and soleus muscles of male Wistar rats treated daily with clenbuterol (4?mg·kg-1). A slow to fast fiber shift was observed in both the EDL and soleus muscles after 9?days of treatment, while hypertrophy was observed only in EDL after 9?days of treatment. Soleus muscle but not EDL muscle underwent an early apoptonecrosis phase characterized by hematoxylin and eosin staining. Total calpain activity was increased in both the EDL and soleus muscles of rats treated with clenbuterol. Moreover, calpain 1 autolysis increased significantly after 14?days in the EDL, but not in the soleus. Calpain 2 autolysis increased significantly in both muscles 6 hours after the first clenbuterol injection, indicating that clenbuterol-induced calpain 2 autolysis occurred earlier than calpain 1 autolysis. Together, these data suggest a preferential involvement of calpain 2 autolysis compared with calpain 1 autolysis in the mechanisms underlying the clenbuterol-induced skeletal muscle remodeling.  相似文献   

17.
The muscle creatine kinase (MCK) gene is expressed at high levels only in differentiated skeletal and cardiac muscle. The activity of the cloned enhancer–promoter has previously been shown to be dependent on the Trex element which is specifically bound by a yet unidentified nuclear factor, TrexBF. We have further characterized the function of the Trex site by comparing wild-type and Trex-mutated MCK transgenes in five mouse skeletal muscles: quadriceps, extensor digitorum longus (EDL), soleus, diaphragm, and distal tongue, as well as in heart ventricular muscle. Several types of statistical analysis including analysis of variance (ANOVA) and rank sum tests were used to compare expression between muscle types and between constructs. Upon mutation of the Trex site, median transgene expression levels decreased 3- to 120-fold in the muscles examined, with statistically significant differences in all muscles except the EDL. Expression in the largely slow soleus muscle was more affected than in the EDL, and expression in the distal tongue and diaphragm muscles was affected more than in soleus. Median expression of the transgene in ventricle decreased about 18-fold upon Trex mutation. Transfections into neonatal rat myocardiocytes confirmed the importance of the Trex site for MCK enhancer activity in heart muscle, but the effect is larger in transgenic mice than in cultured cells.  相似文献   

18.
The ubiquitin-proteasome system is the primary proteolytic pathway implicated in skeletal muscle atrophy under catabolic conditions. Although several studies showed that proteasome inhibitors reduced proteolysis under catabolic conditions, few studies have demonstrated the ability of these inhibitors to preserve skeletal muscle mass and architecture in vivo. To explore this, we studied the effect of the proteasome inhibitor Velcade (also known as PS-341 and bortezomib) in denervated skeletal muscle in rats. Rats were given vehicle or Velcade (3 mg/kg po) daily for 7 days beginning immediately after induction of muscle atrophy by crushing the sciatic nerve. At the end of the study, the rats were euthanized and the soleus and extensor digitorum longus (EDL) muscles were harvested. In vehicle-treated rats, denervation caused a 33.5 +/- 2.8% and 16.2 +/- 2.7% decrease in the soleus and EDL muscle wet weights (% atrophy), respectively, compared to muscles from the contralateral (innervated) limb. Velcade significantly reduced denervation-induced atrophy to 17.1 +/- 3.3% in the soleus (P < 0.01), a 51.6% reduction in atrophy associated with denervation, with little effect on the EDL (9.8 +/- 3.2% atrophy). Histology showed a preservation of muscle mass and preservation of normal cellular architecture after Velcade treatment. Ubiquitin mRNA levels in denervated soleus muscle at the end of the study were significantly elevated 120 +/- 25% above sham control levels and were reduced to control levels by Velcade. In contrast, testosterone proprionate (3 mg/kg sc) did not alleviate denervation-induced skeletal muscle atrophy but did prevent castration-induced levator ani atrophy, while Velcade was without effect. These results show that proteasome inhibition attenuates denervation-induced muscle atrophy in vivo in soleus muscles. However, this mechanism may not be operative in all types of atrophy.  相似文献   

19.
Changes in alphaB-crystallin content in adult rat soleus and extensor digitorum longus (EDL) were examined after 8 wk of 3,5, 3'-triiodothyronine (T(3)) and propylthiouracil (PTU) treatments. Cellular distributions of alphaB-crystallin expression related to fiber type, and distribution shifts with these treatments were also examined in detail from the gray level of reactivity to specific anti-alphaB-crystallin antibody. alphaB-crystallin content in both soleus and EDL muscles was significantly decreased after T(3), and that in EDL was significantly increased over twofold after PTU treatment. In both control soleus and EDL muscles, the gray level of type I fibers was higher than that of type II fibers. alphaB-crystallin expression among type II subtypes was muscle specific; the order was type I > IIa > IIx > IIb in control EDL muscle and type IIx > or = IIa in soleus muscle. The relation was basically unchanged in both muscles after T(3) treatment and was, in particular, well maintained in EDL muscle. Under hypothyroidism conditions with PTU, the mean alphaB-crystallin levels of type IIa and IIx fibers were significantly lower than levels under control conditions. Thus the relation between fiber type and the expression manner of stress protein alphaB-crystallin is muscle specific and also is well regulated under thyroid hormone, especially in fast EDL muscle.  相似文献   

20.
The concentration of NADH was determined a high-oxidative muscle (soleus) and a high-glycolytic muscle (extensor digitorum longus, EDL) from resting rats. The NADH content of freeze-clamped control muscles was 0.35 +/- 0.04 (mean +/- S.D.) and 0.31 +/- 0.04 mmol/kg dry wt. in EDL and soleus respectively, and increased to peak values of 0.58 +/- 0.05 (EDL) and 0.87 +/- 0.10 (soleus) after 10 min of NaCN treatment. The [lactate]/[pyruvate] ratio, which was not significantly changed in soleus and increased only slightly in EDL after NaCN incubation, shows that only minor changes occurred in the cytosolic NADH concentration. Provided that the major part of muscle NADH is located in the mitochondria it can be calculated that the mitochondrial NADH content in skeletal muscle at rest is about 36 (soleus) and 60% (EDL) of the anoxic value, respectively. These results are in contrast with previous studies with the surface-fluorescence technique, where mitochondrial NAD appeared to be almost completely reduced in resting skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号