首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neutral lipid storage disease (NLSD) (Chanarin-Dorfman Syndrome) is an autosomal recessive disorder of multisystem triacylglycerol (TAG) storage. Previous work has pointed to a defect in intracellular TAG metabolism. In the studies reported here, the lipid metabolism of three lines of NLSD fibroblasts were compared to normal skin fibroblasts. When pulsed with [3H]oleic acid, the earliest observed abnormality in NLSD cell lines was increased incorporation into phosphatidylethanolamine, followed by accumulation of radiolabel in TAG. Activities of several glycerolipid synthetic enzymes were comparable in NLSD and normal fibroblast lines, excluding oversynthesis of glycerolipid. The proportion of plasmalogen and neutral ether lipid synthesized was normal and alkylglycerols did not accumulate, excluding a defect in ether lipid metabolism. Activities of both acid lipase and Mn2(+)-sensitive lipase within the particulate fractions of NLSD and normal fibroblasts were comparable. These studies are most consistent with functional deficiency of a TAG lipase with activity against a pool of TAG that are normally utilized for phospholipid biosynthesis.  相似文献   

2.
Cells produce two cholesteryl ester transfer protein (CETP) isoforms, full-length and a shorter variant produced by alternative splicing. Blocking synthesis of both isoforms disrupts lipid metabolism and storage. To further define the role of CETP in cellular lipid metabolism, we stably overexpressed full-length CETP in SW872 cells. These CETP+ cells had several-fold higher intracellular CETP and accumulated 50% less TG due to a 26% decrease in TG synthesis and 2.5-fold higher TG turnover rate. Reduced TG synthesis was due to decreased fatty acid uptake and impaired conversion of diglyceride to TG even though diacylglycerol acyltransferase activity was normal. Sterol-regulatory element binding protein 1 mRNA levels were normal, and although PPARγ expression was reduced, the expression of several of its target genes including adipocyte triglyceride lipase, FASN, and APOE was normal. CETP+ cells contained smaller lipid droplets, consistent with their higher levels of perilipin protein family (PLIN) 3 compared with PLIN1 and PLIN2. Intracellular CETP was mostly associated with the endoplasmic reticulum, although CETP near lipid droplets poorly colocalized with this membrane. A small pool of CETP resided in the cytoplasm, and a subfraction coisolated with lipid droplets. These data show that overexpression of full-length CETP disrupts lipid homeostasis resulting in the formation of smaller, more metabolically active lipid droplets.  相似文献   

3.
The lipid metabolism in cultured fibroblasts from multisystemic (type 3) lipid storage myopathy and controls has been studied through pulse-chase experiments using 1-pyrenedecanoic acid as precursor. The uptake of 1-pyrenedecanoic acid was not significantly different in multisystemic lipid storage myopathy and control fibroblasts. The amount of fluorescent lipids synthesized by the cells was proportionally increasing with rising 1-pyrenedecanoic acid concentration in the culture medium. The proportion of the various fluorescent lipids does not significantly vary between 17 to 67 nmol/ml. But a 1-pyrenedecanoic acid concentration higher than 70-100 nmol/ml seems to be severely toxic for the cells. When incubated for 24 h in the presence of 1-pyrenedecanoic acid, at any concentration, the neutral lipid content (triacylglycerols, diacylglycerols and cholesterol esters) of cultured multisystemic lipid storage myopathy fibroblasts was higher than that of controls (around 600% of controls). Chase experiments showed that the biosynthesized triacylglycerols were not degraded in multisystemic lipid storage myopathy cells, but on the contrary were increased, probably by acylation of fluorescent fatty acids liberated from phospholipid turnover. In normal fibroblasts all the cellular fluorescence disappeared after 5 days chase and 1-pyrenedecanoic acid was recovered (as free 1-pyrenedecanoic acid) in the culture medium. In contrast, in multisystemic lipid storage myopathy fibroblasts, 40% of the fluorescence was remaining in the cells after 5 days chase; it was contributed by fluorescent triacylglycerols, which appeared as strongly fluorescent cytoplasmic vesicles. This probably results from a defect of the cytoplasmic catabolism of triacylglycerols which are accumulated in a cytoplasmic compartment independent of the lysosomal compartment (since the acid lysosomal lipase is not deficient in the multisystemic lipid storage myopathy cells). Finally, these results suggest a practical diagnostic application of 1-pyrenedecanoic acid, which can be used to differentiate multisystemic lipid storage myopathy from normal cultured fibroblasts.  相似文献   

4.
Different primary lysosomal trafficking defects lead to common alterations in lipid trafficking, suggesting cooperative interactions among lysosomal lipids. However, cellular analysis of the functional consequences of this phenomenon is lacking. As a test case, we studied cells with defective Niemann‐Pick C1 (NPC1) protein, a cholesterol trafficking protein whose defect gives rise to lysosomal accumulation of cholesterol and other lipids, leading to NPC disease. NPC1 cells also develop a secondary defect in acid sphingomyelinase (SMase) activity despite a normal acid SMase gene (SMPD1). When acid SMase activity was restored to normal levels in NPC1‐deficient CHO cells through SMPD1 transfection, there was a dramatic reduction in lysosomal cholesterol. Two other defects, excess lysosomal bis‐(monoacylglycerol) phosphate (BMP) and defective transferrin receptor (TfR) recycling, were also markedly improved. To test its relevance in human cells, the acid SMase activity defect in fibroblasts from NPC1 patients was corrected by SMPD1 transfection or acid SMase enzyme replacement. Both treatments resulted in a dramatic reduction in lysosomal cholesterol. These data show that correcting one aspect of a complex lysosomal lipid storage disease can reduce the cellular consequences even if the primary genetic defect is not corrected.  相似文献   

5.
The brummer (bmm) genes encode the lipid storage droplet‐associated triacylglycerols (TAG) lipases, which belong to the Brummer/Nutrin subfamily. These enzymes hydrolyze the ester bonds in TAG in lipid metabolism and act in insect energy homeostasis. Exposure to some agricultural chemicals leads to increased fecundity, which necessarily involves lipid metabolism, in some planthopper species. However, the biological roles of bmm in planthopper lipid storage and mobilization have not been investigated. Here, the open reading frame (ORF) of bmm (Nlbmm) was cloned and sequenced from the brown planthopper (BPH; Nilaparvata lugens). The ORF is 1014 bp encoding 338 amino acid residues. Nlbmm contained patatin domains and shared considerable evolutionary conservation with other insect bmms. Nlbmm is highly expressed in the fat body, consistent with its roles in lipid metabolism. Injection with Nlbmm double‐stranded RNA (dsNlbmm) led to reduced Nlbmm mRNA accumulation, but did not influence expression of several genes related to lipid synthesis including acyl‐CoA‐binding protein (ACBP), acetyl‐CoA carboxylase (ACC), and a lipophorin receptor (LpR). Nlbmm knockdown led to increased TAG contents in whole bodies, accumulation of total fat body lipid, and decreased hemolymph lipid content. Nlbmm knockdown did not influence the synthesis and distribution of glycerol. We infer that Nlbmm acts in TAG breakdown and fat metabolism in N. lugens.  相似文献   

6.
7.
A new variant of multisystemic lipid storage myopathy (type 3) has been identified. Human cultured fibroblasts present a major triacylglycerol storage whereas other neutral lipids and phospholipids are in the normal range. When feeding the cells in the presence of radiolabelled oleic acid we observed an accumulation of radiolabelled triacylglycerols demonstrating the endogenous biosynthesis of the stored triacylglycerols. After a 72-hr chase period, no degradation of radiolabelled triacylglycerols was observed. Histochemical examination of multisystemic lipid storage myopathy skin fibroblasts showed a massive accumulation of neutral lipids (stained by the fluorescent probe Nile Red) in cells grown in medium supplemented with 10% fetal calf serum. These cytoplasmic vacuoles were not obviously membrane-surrounded as shown by electron microscopy.  相似文献   

8.
Cardiac triacylglycerol (TAG) stores buffer the intracellular availability of long chain fatty acid (LCFA) that act as nuclear receptor ligands, substrate for lipotoxic derivatives, and high energy-yield fuel. The kinetic characteristics of TAG turnover and homeostatic mechanisms linking uptake and storage dynamics in hearts have until now remained elusive. This work examines TAG pool dynamics in the intact beating heart, under normal conditions and in response to acute gene expression-induced changes in CD36. Dynamic mode 13C NMR elucidated multiple kinetic processes in 13C-palmitate incorporation into TAG: an initial, saturable exponential component and a slower linear rate. Although previous work indicates the linear component to reflect TAG turnover, we hypothesized the saturable exponential to reflect transport of LCFA across the sarcolemma. Thus, we overexpressed the LCFA transporter CD36 through cardiac-specific adenoviral infection in vivo. Within 72 h, CD36 expression was increased 40% in intact hearts, accelerating the exponential phase relative to PBS-infused hearts. TAG turnover also increased with elevations in adipose triglyceride lipase (ATGL) and a modest increase in diacylglycerol acyltransferase 1 (DGAT1), without a significant expansion of the intracellular lipid pools. The results demonstrate a dynamic system of reciprocal gene regulation that couples saturable LCFA uptake across the sarcolemma to TAG synthesis/lipolysis rates.  相似文献   

9.
Mixotrophic cultivation can increase microalgae productivity, yet the associated lipid metabolism remains mostly unknown. Stable isotope labeling was used to track assimilation of glycerol into the triacylglyceride (TAG) and membrane lipids of Nannochloropsis salina. In N-replete media, glycerol uptake and 13C incorporation into acyl chains were, respectively, 6-fold and 12-fold higher than in N-deplete conditions. In N-replete cultures, 42% of the carbon in the consumed glycerol was assimilated into lipid acyl chains, mostly in membrane lipids rather than TAG. In N-deplete cultures, only 11% of the limited amount of consumed glycerol was fixed into lipid acyl chains. Labeled lipid-associated glycerol backbones were predominantly 13C3 labeled, suggesting that intact glycerol molecules were directly esterified with fatty acids/polar head groups. However, the presence of singly and doubly labeled lipid-bound glycerol species suggested that some glycerol also went through the central carbon metabolism before forming glycerol-3-phosphate destined for lipid esterification. 13C incorporation was higher in the saturated and monounsaturated than the polyunsaturated acyl chains of TAG, indicating the flux of carbon from glycerol went first to de novo fatty acid synthesis before acyl editing reactions. The results demonstrate that nitrogen availability influences both glycerol consumption and utilization for lipid synthesis in Nannochloropsis, providing novel insights for developing mixotrophic cultivation strategies.  相似文献   

10.
Comparative gene identification-58 (CGI-58), also designated as α/β-hydrolase domain containing-5 (ABHD-5), is a lipid droplet-associated protein that activates adipose triglyceride lipase (ATGL) and acylates lysophosphatidic acid. Activation of ATGL initiates the hydrolytic catabolism of cellular triacylglycerol (TG) stores to glycerol and nonesterified fatty acids. Mutations in both ATGL and CGI-58 cause “neutral lipid storage disease” characterized by massive accumulation of TG in various tissues. The analysis of CGI-58-deficient (Cgi-58−/−) mice, presented in this study, reveals a dual function of CGI-58 in lipid metabolism. First, systemic TG accumulation and severe hepatic steatosis in newborn Cgi-58−/− mice establish a limiting role for CGI-58 in ATGL-mediated TG hydrolysis and supply of nonesterified fatty acids as energy substrate. Second, a severe skin permeability barrier defect uncovers an essential ATGL-independent role of CGI-58 in skin lipid metabolism. The neonatal lethal skin barrier defect is linked to an impaired hydrolysis of epidermal TG. As a consequence, sequestration of fatty acids in TG prevents the synthesis of acylceramides, which are essential lipid precursors for the formation of a functional skin permeability barrier. This mechanism may also underlie the pathogenesis of ichthyosis in neutral lipid storage disease patients lacking functional CGI-58.  相似文献   

11.
The anabolism and catabolism of myocardial triacylglycerol (TAG) stores are important processes for normal cardiac function. TAG synthesis detoxifies and stockpiles fatty acids to prevent lipotoxicity, whereas TAG hydrolysis (lipolysis) remobilizes fatty acids from endogenous storage pools as energy substrates, signaling molecules, or precursors for complex lipids. This study focused on the role of G0/G1 switch 2 (G0S2) protein, which was previously shown to inhibit the principal TAG hydrolase adipose triglyceride lipase (ATGL), in the regulation of cardiac lipolysis. Using wild-type and mutant mice, we show the following: (i) G0S2 is expressed in the heart and regulated by the nutritional status with highest expression levels after re-feeding. (ii) Cardiac-specific overexpression of G0S2 inhibits cardiac lipolysis by direct protein-protein interaction with ATGL. This leads to severe cardiac steatosis. The steatotic hearts caused by G0S2 overexpression are less prone to fibrotic remodeling or cardiac dysfunction than hearts with a lipolytic defect due to ATGL deficiency. (iii) Conversely to the phenotype of transgenic mice, G0S2 deficiency results in a de-repression of cardiac lipolysis and decreased cardiac TAG content. We conclude that G0S2 acts as a potent ATGL inhibitor in the heart modulating cardiac substrate utilization by regulating cardiac lipolysis.  相似文献   

12.
The Saccharomyces cerevisiae Tgl2 protein shows sequence homology to Pseudomonas triacylglycerol (TAG) lipases, but its role in the yeast lipid metabolism is not known. Using hemagglutinin-tagged Tgl2p purified from yeast, we report that this protein carries a significant lipolytic activity toward long-chain TAG. Importantly, mutant hemagglutinin-Tgl2pS144A, which contains alanine 144 in place of serine 144 in the lipase consensus sequence (G/A)XSXG exhibits no such activity. Although cellular TAG hydrolysis is reduced in the tgl2 deletion mutant, overproduction of Tgl2p in this mutant leads to an increase in TAG degradation in the presence of fatty acid synthesis inhibitor cerulenin, but that of Tgl2pS144A does not. This result demonstrates the lipolytic function of Tgl2p in yeast. Although other yeast TAG lipases are localized to lipid particles, Tgl2p is enriched in the mitochondria. The mitochondrial fraction purified from the TGL2-overexpressing yeast shows a strong lipolytic activity, which was absent in the tgl2 deletion mutant. Therefore, we conclude that Tgl2p is a functional lipase of the yeast mitochondria. By analyzing phenotypic effects of TGL2-deficient yeast, we also find that lipolysis-competent Tgl2p is required for the viability of cells treated with antimitotic drug. The addition of oleic acid, the product of Tgl2p-catalyzed lipolysis, fully complements the antimitotic drug sensitivity of the tgl2 null mutation. Thus, we propose that the mitochondrial Tgl2p-dependent lipolysis is crucial for the survival of cells under antimitotic drug treatment.  相似文献   

13.
Currently, little is known about the role of intracellular triacylglycerol (TAG) lipases in the brain. Adipose triglyceride lipase (ATGL) is encoded by the PNPLA2 gene and catalyzes the rate-limiting step of lipolysis. In this study, we investigated the effects of ATGL deficiency on brain lipid metabolism in vivo using an established knock-out mouse model (ATGL-ko). A moderate decrease in TAG hydrolase activity detected in ATGL-ko versus wild-type brain tissue was accompanied by a 14-fold increase in TAG levels and an altered composition of TAG-associated fatty acids in ATGL-ko brains. Oil Red O staining revealed a severe accumulation of neutral lipids associated to cerebrovascular cells and in distinct brain regions namely the ependymal cell layer and the choroid plexus along the ventricular system. In situ hybridization histochemistry identified ATGL mRNA expression in ependymal cells, the choroid plexus, pyramidal cells of the hippocampus, and the dentate gyrus. Our findings imply that ATGL is involved in brain fatty acid metabolism, particularly in regions mediating transport and exchange processes: the brain-CSF interface, the blood-CSF barrier, and the blood-brain barrier.  相似文献   

14.
Lipid class dynamics, the pattern of change in the primary form and location of lipid stores and their relationship with standard length (L(S) ), were investigated in collections of young-of-the-year weakfish Cynoscion regalis for the purpose of determining the utility of this analysis as an indication of condition. The separation of total lipids into individual classes and the analysis of potential storage depots revealed the general patterns of lipid class dynamics and energy storage in C. regalis during their period of juvenile estuarine residency. Phospholipid and cholesterol exhibited moderate but variable (8·1-40·0 and 1·3-21·5 mg g(-1) , respectively) concentrations across the entire juvenile period and were the predominant lipid classes in juveniles <100 mm L(S) , while wax ester concentrations were low (c. 1 mg g(-1) ) and exhibited the least amount of variability among lipid classes. Triacylglycerols (TAG) and free fatty acids (FFA) exhibited similar dynamics, with relatively low concentrations (<15 mg g(-1) ) in individuals ≤100 mm L(S) . In larger juveniles both TAG and FFA concentrations generally increased rapidly, though there was considerable variability in both measures (0·0-199·7 and 0·0-49·7 mg g(-1) , respectively). Increasing levels of lipids, primarily in the form of TAG, with size indicated an accumulation of energy reserves with growth, thus providing an indication of individual condition for larger juveniles. Separate analysis of liver, viscera and the remaining carcass indicated that liver and viscera did not represent a significant depot of TAG reserves. Analysis of samples derived from whole juvenile C. regalis thus provided an accurate estimate of energy reserves.  相似文献   

15.
The lysosomal enzyme responsible for cholesteryl ester hydrolysis, acid cholesteryl ester hydrolase, or acid lipase (E.C.3.1.1.13) plays an important role in cellular cholesterol metabolism. Loss of the activity of this enzyme in tissues of individuals with both Wolman disease and cholesteryl ester storage disease is believed to play a causal role in these conditions. The objectives of our studies were not only to directly compare and contrast the clinical features of Wolman disease and cholesteryl ester storage disease but also to determine the reasons(s) for the varied phenotype expression of acid cholesteryl ester hydrolase deficiency. Although both diseases manifest a type II hyperlipoproteinemic phenotype and hepatomegaly secondary to lipid accumulation, a more malignant clinical course with more significant hepatic and adrenal manifestations was observed in the patient with Wolman disease. However, the acid cholesteryl ester hydrolase activity in cultured fibroblasts in both diseases was virtually absent. In addition, fibroblasts from both Wolman disease and cholesteryl ester storage disease were able to utilize exogenously supplied enzyme, suggesting that neither disease was due to defective enzyme delivery by the mannose-6-phosphate receptor pathway. Coculture and cell fusion of fibroblasts from Wolman disease and cholesteryl ester storage disease subjects did not lead to correction of the enzyme deficiency, indicating that these disorders are allelic. However, the activities of the hepatic acid and neutral lipase in these two clinical variants were quite different. Hepatic acid lipase activity was only 4% normal in Wolman disease, but the activity was 23% normal in cholesteryl ester storage disease. The hepatic neutral lipase activity was normal in Wolman disease but increased more than twofold in cholesteryl ester storage disease. These combined results indicate that the clinical heterogeneity in acid cholesteryl ester hydrolase deficiency can be explained by a varied hepatic metabolic response to an allelic mutation.  相似文献   

16.
The Arctic pteropod Clione limacina was collected in Kongsfjorden, Svalbard, in mid June 2004, to study the lipid metabolism within the sites of lipid storage structures during long-term starvation. Animals survived in an aquarium without any food for nearly 1 year (356 days). Size, number of lipid droplets, dry and lipid mass, lipid class and fatty acid compositions of C. limacina were determined and separately analysed for the digestive gland and the remaining integument. During the starvation period, animals shrunk from 22.4 to 12 mm in length on average, and the number of lipid droplets decreased from 1,600 to 1,000 per animal. Dry mass (DM) and total lipid mass both dropped by about 80% from day 200 to the end. The lipid content as percentage DM of the total organism did not decrease significantly ranging from 43.8 to 32.3%DM. The lipid content of the trunk was moderate with about 20%DM. The digestive gland was very rich in lipids with more than 70%DM throughout the experiment and is the major site of lipid metabolism and storage. Triacylglycerols (TAG) decreased, in the total organism, from high initial levels of 62.6 to 43% of total lipid at the end. In contrast, the proportions of 1-O-alkyldiacylglycerols [diacylglycerol ethers (DAGE)] remained almost constant, varying between 20.4 and 28.4%. In the digestive gland, TAG ranged from 60.3 to 64.8% and DAGE from 23.6 to 32.2% from day 200 to the end of the experiment. TAG and DAGE of the trunk were most likely located in the lipid droplets and were almost depleted at the end of starvation. Besides their function as lipid deposit DAGE may also act as protecting substance against bacterial and fungal infections. During the first 200 days of starvation, the fatty acid compositions showed only small variations. Thereafter, fatty acids typical for storage lipids decreased in all body compartments. In adaptation to long periods of food scarcity, C. limacina has evolved various strategies as body shrinkage, utilisation of body constituents not essential for survival, a very low metabolism and slow lipid consumption.  相似文献   

17.
CGI-58/ABHD5 coactivates adipose triglyceride lipase (ATGL). In adipocytes, CGI-58 binds to perilipin 1A on lipid droplets under basal conditions, preventing interaction with ATGL. Upon activation of protein kinase A (PKA), perilipin 1A is phosphorylated and CGI-58 rapidly disperses into the cytoplasm, enabling lipase coactivation. Because the amino acid sequence of murine CGI-58 has a predicted PKA consensus sequence of RKYS239S240, we hypothesized that phosphorylation of CGI-58 is involved in this process. We show that Ser239 of murine CGI-58 is a substrate for PKA using phosphoamino acid analysis, MS, and immuno­blotting approaches to study phosphorylation of recombinant CGI-58 and endogenous CGI-58 of adipose tissue. Phosphorylation of CGI-58 neither increased nor impaired coactivation of ATGL in vitro. Moreover, Ser239 was not required for CGI-58 function to increase triacylglycerol turnover in human neutral lipid storage disorder fibroblasts that lack endogenous CGI-58. Both CGI-58 and S239A/S240A-mutated CGI-58 localized to perilipin 1A-coated lipid droplets in cells. When PKA was activated, WT CGI-58 dispersed into the cytoplasm, whereas substantial S239A/S240A-mutated CGI-58 remained on lipid droplets. Perilipin phosphorylation also contributed to CGI-58 dispersion. PKA-mediated phosphorylation of CGI-58 is required for dispersion of CGI-58 from perilipin 1A-coated lipid droplets, thereby increasing CGI-58 availability for ATGL coactivation.  相似文献   

18.
Diatoms accumulate triacylglycerols (TAGs) as storage lipids, but the knowledge about the molecular mechanisms of lipid metabolism is still sparse. Starting from a partial sequence for a putative TAG-lipase of the diatom Phaeodactylum tricornutum retrieved from the data bases, we have identified the full length coding sequence, tgl1. The gene encodes an 813 amino acid sequence that shows distinct motifs for so called “true” TAG-lipases [EC 3.1.1.3] that have been functionally characterized in model organisms like Arabidopsis thaliana and Saccharomyces cerevisiae. These lipases mediate the first initial step of TAG breakdown from storage lipids. To test whether Tgl1 can act as a TAG-lipase, a His-tagged version was overexpressed in Escherichia coli and the protein indeed showed esterase activity. To identify the TAG degrading function of Tgl1 in P. tricornutum, knock-down mutant strains were created using an antisense RNA approach. In the mutant cell lines the relative tgl1-mRNA-level was reduced up to 20% of that of the wild type, accompanied by a strong increase of TAG in the lipid extracts. In spite of the TAG accumulation, the polar lipid species pattern appeared to be unchanged, confirming the TAG-lipase function of Tgl1.  相似文献   

19.
Murine desnutrin/human ATGL is a triacylglycerol (TAG) hydrolase with a predicted catalytic dyad within an α-β hydrolase fold in the N-terminal region. In humans, mutations resulting in C-terminal truncation cause neutral lipid storage disease with myopathy. To identify critical functional domains, we measured TAG breakdown in cultured cells by mutated or truncated desnutrin. In vitro, C-terminally truncated desnutrin displayed an even higher apparent Vmax than the full-length form without changes in Km, which may be explained by our finding of an interaction between the C- and N-terminal domains. In live cells, however, C-terminally truncated adenoviral desnutrin had lower TAG hydrolase activity. We investigated a role for the phosphorylation of C-terminal S406 and S430 residues but found that these were not necessary for TAG breakdown or lipid droplet localization in cells. The predicted N-terminal active sites, S47 and D166, were both critical for TAG hydrolysis in live cells and in vitro. We also identified two overlapping N-terminal motifs that predict lipid substrate binding domains, a glycine-rich motif (underlined) and an amphipathic α-helix (bold) within amino acid residues 10–24 (ISFAGCGFLGVYHIG). G14, F17, L18, and V20, but not G16 and G19, were important for TAG hydrolysis, suggesting a potential role for the amphipathic α-helix in TAG binding. This study identifies for the first time critical sites in the N-terminal region of desnutrin and reveals the requirement of the C-terminal region for TAG hydrolysis in cultured cells.  相似文献   

20.
Survival in a terrestrial, dry environment necessitates a permeability barrier for regulated permeation of water and electrolytes in the cornified layer of the skin (the stratum corneum) to minimize desiccation of the body. This barrier is formed during cornification and involves a cross-linking of corneocyte proteins as well as an extensive remodeling of lipids. The cleavage of precursor lipids from lamellar bodies by various hydrolytic enzymes generates ceramides, cholesterol, and non-esterified fatty acids for the extracellular lipid lamellae in the stratum corneum. However, the important role of epidermal triacylglycerol (TAG) metabolism during formation of a functional permeability barrier in the skin was only recently discovered. Humans with mutations in the ABHD5/CGI-58 (α/β hydrolase domain containing protein 5, also known as comparative gene identification-58, CGI-58) gene suffer from a defect in TAG catabolism that causes neutral lipid storage disease with ichthyosis. In addition, mice with deficiencies in genes involved in TAG catabolism (Abhd5/Cgi-58 knock-out mice) or TAG synthesis (acyl-CoA:diacylglycerol acyltransferase-2, Dgat2 knock-out mice) also develop severe skin permeability barrier dysfunctions and die soon after birth due to increased dehydration. As a result of these defects in epidermal TAG metabolism, humans and mice lack ω-(O)-acylceramides, which leads to malformation of the cornified lipid envelope of the skin. In healthy skin, this epidermal structure provides an interface for the linkage of lamellar membranes with corneocyte proteins to maintain permeability barrier homeostasis. This review focuses on recent advances in the understanding of biochemical mechanisms involved in epidermal neutral lipid metabolism and the generation of a functional skin permeability barrier. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号