首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the first purification and characterization of a eukaryotic algal phosphoglycerate kinase (PGK), Two forms of PGK (PGK1 and PGK2) from the green alga Selenastrum minutum (Naeg.) Collins were purified to electrophoretic homogeneity with specific activities of 1100 and 1069 units · mg?1 protein, respectively. The portion of PGK1 and PGK2 (probably the cytosolic and chloroplastic forms, respectively) in this organism was estimated as 32 and 68%, respectively. PGK1 was more heat-stable than PGK2. The Mr estimation for PGK1 and PGK2 by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and gel filtration indicated that they both were monomeric with a similar Mr of approximately 44 kDa. Antibodies raised against S. minutum PGK1 cross-reacted with PGK2 as well as PGKs from prokaryotic and eukaryotic sources, suggesting that PGK1 was structurally and immunologically closely related to PGK2 and other PGKs, which was consistent with NH2-terminal sequence analysis. Comparative kinetic and regulatory properties of PGK1 and PGK2 from S. minutum were investigated, Both forms exhibited hyperbolic kinetics with respect to both 3-phosphoglycerate (3-PGA) and Mg-adenosine triphosphate2- (MgATP2-) under the conditions tested and had similar Km values for each substrate (PGK1; Km (MgATP2-) = 0.37 mM, Km(3-PGA) = 0.59 mM; PGK2; Km(MgATP2-) = 0.32 mM, Km(3-PGA) = 0.46 mM). PGK1 and PGK2, however, differed significantly in several other kinetic properties. PGK2 had a broad pH optimum between 7.3 and 7.8, as compared to PGK1, with a pH optimum of 7.3 Mg2+ was the most efficient cofactor for both forms; it inhibited PGK1 but not PGK2 at higher concentrations (>10 mM). Other divalent cations (Mn2+, Zn2+, Co2+, Cd2+, and Ca2+) only partially replaced Mg2+ and were more effective for PGK1 than for PGK2, A wide range of metabolites was examined for regulatory properties. Energy charge was the most important factor in regulating the two forms of S. minutum PGK. These results were interpreted in light of the regulation of this kinase in response to the cell energy requirement and the need for glycolytic carbon flow to provide carbon skeletons for amino acid biosynthesis.  相似文献   

2.
1-adrenaline, ACTH and glucagon activate the adenylate cyclase of rat adipocytes by decreasing its S0.5(Mg2+) (concentration yielding 0.5 Vmax) from its basal value of 11.5 to 1.2, 0.3 and 1.8 mM and by increasing its Ki(ATP4?) from 0.03 to 0.25; 0.62 and 0.16 mM respectively. The kinetic properties of the enzyme are regulated by its state of saturation with ATP4? or Mg2+; its saturation with ATP4? and citrate3? suppressed its basal and hormone-dependent activities. The hormone-dependent decrease in Km and increase in Vmax of the enzyme occur when shifting from suboptimal low concentrations of hormone and Mg2+ to optimal conditions, i.e., high concentration of hormone and low concentration of Mg2+. The increase in the state of saturation of the enzyme with Mg2+ decreases the hormone-dependent effects on Vmax and results in identical values of Km (0.14 mM) for its basal and 1-adrenaline dependent activities. CaCl2 saturation curves at 5 mM ATP with either 5, 10 or 20 mM MgCl2 show that the substitution of 5 mM MgCl2 by 10 mM and 20 mM MgCl2 increased the Ki(Ca2+) of the enzyme from 0.19 to 0.49 and 0.94 mM but decreased its Ki(CaATP) from 0.42 to 0.19 and 0.14 mM respectively. Only when the concentration of MgCl2 exceeded that of ATP did 1-adrenaline and ACTH activate the enzyme by increasing its Ki(Ca2+), although only ACTH increased its Ki(CaATP). An increase in energy charge would decrease the intracellular concentrations of Mg2+ and Ca2+ because ATP4? has stronger binding constants for Mg2+ and Ca2+ than ADP3? and AMP2?. Hence, the reported properties of the enzyme suggests that changes in energy charge may allow for metabolic feedback control of the hormonal responsiveness of the Mg2+, Ca2+, ATP4? -sensitive adenylate cyclase.  相似文献   

3.
Mevalonate kinase activity was demonstrated in acetone powder extracts from Agave americana leaves, flowers and scape. ATP was the most effective phosphate donor. The enzyme had an optimum pH of 7.9 in Tris-HCl buffer. Dialysis decreased the ability to phosphorylate mevalonic acid (MVA). Partially purified mevalonate kinase reached maximum activity in the presence of 2 mM Mn2+ or 6–8 mM Mg2+. Higher concentrations of Mn2+ were inhibitory, whereas higher concentrations of Mg2+ produced only a small decrease in the activity. The amount of mevalonate-5-phosphate (MVAP) formed depended on protein concentration and incubation time. During short incubations, the MVAP formed increased as protein concentration rose, whereas during prolonged incubations (1–6 hr), there was a decrease in the MVAP formed when a certain amount of protein was exceeded. It is suggested that MVAP formed was hydrolysed by a phosphatase present in the extracts. This interfering activity was eliminated when mevalonate kinase is partially purified. The apparent Km values of the enzyme from leaves were 0.05 mM for MVA and 0. 14 mM for ATP. Similar Km values are obtained with partially purified mevalonate kinase. The enzyme was purified by ammonium sulphate precipitation, Sephadex G-100 filtration and DEAE-Sephadex A-50 fractionation.  相似文献   

4.
Franklin Fuchs  Margaret Bayuk 《BBA》1976,440(2):448-455
The binding of 45Ca2+ to glycerinated rabbit psoas fibers was measured by means of a double isotope technique. With 5 mM Mg2+ (no ATP) binding was half-maximal at 1.4 · 10?6M Ca2+ and the maximal amount bound was 1.6 μmol/g protein. At < 50% saturation, the Scatchard plot had a positive slope and the Hill coefficient was 2.2. At greater than 50% saturation, the Scatchard plot was linear with a negative slope (K′ = 0.8 · 106 M?1) and the Hill coefficient was 1.0. In the absence of Mg2+, binding was half-maximal at 3 · 10?7 M Ca2+ and the maximal amount bound was 2.9 μmol/g protein. The Scatchard plot indicated two classes of sites with K′ values of about 2 · 107 and 2 · 106 M?1. The Hill coefficient in the mid-saturation range was approx. 0.6. The data indicate that in the presence of Mg2+ binding to about half of the total Ca2+ binding sites is suppressed and there is a strong positive cooperativity involving half of the remaining sites.  相似文献   

5.
Aspartate kinase and two homoserine dehydrogenases were partially purified from 4-day-old pea seedlings. A sensitive method for measuring aspartate kinase activity is described. Aspartate kinase activity was dependent upon ATP, Mg2+ or Mn2+, and aspartate. The aspartate kinase was inhibited in a sigmoidal manner by threonine and Ki for threonine was 0·57 mM. The enzyme could be desensitized to the inhibitor and threonine protected the enzyme against thermal inactivation. Aspartate kinase activity was enhanced by isoleucine, valine and alanine. Homoserine, methionine and lysine were without effect. The homoserine dehydrogenase activity which was associated with aspartate kinase during purification could be resolved into two peaks by gel filtration. The activity of both peaks was inhibited by aspartate and cysteine and one was inhibited by threonine.  相似文献   

6.
Magnetic Resonance Spectroscopy affords the possibility of assessing in vivo the thermodynamic status of living tissues. The main thermodynamic variables relevant for the knowledge of the health of living tissues are: ΔG of ATP hydrolysis and cytosolic [ADP], the latter as calculated from the apparent equilibrium constant of the creatine kinase reaction. In this study we assessed the stoichiometric equilibrium constant of the creatine kinase reaction by in vitro 31P NMR measurements and computer calculations resulting to be: logKCK=8.00±0.07 at T=310 K and ionic strength I=0.25 M. This value refers to the equilibrium:
PCr2−+ADP3−+H+=Cr+ATP4−  相似文献   

7.
(1) Contrary to what has usually been assumed, (Na+ + K+)-ATPase slowly hydrolyses AdoPP[NH]P in the presence of Na+ + Mg2+ to ADP-NH2 and Pi. The activity is ouabain-sensitive and is not detected in the absence of either Mg2+ or Na2+. The specific activity of the Na+ + Mg2+ dependent AdoPP[NH]P hydrolysis at 37°C and pH 7.0 is 4% of that for ATP under identical conditions and only 0.07% of that for ATP in the presence of K+. The activity is not stimulated by K+, nor can K+ replace Na+ in its stimulatory action. This suggests that phosphorylation is rate-limiting. Stimulation by Na+ is positively cooperative with a Hill coefficient of 2.4; half-maximal stimulation occurs at 5–9 mM. The Km value for AdoPP[NH]P is 17 μM. At 0°C and 21°C the specific activity is 2 and 14%, respectively, of that at 37°C. AMP, ADP and AdoPP[CH2]P are not detectably hydrolysed by (Na+ + K+)-ATPase in the presence of Na+ + Mg2+. (2) In addition, AdoPP[NH]P undergoes spontaneous, non-enzymatic hydrolysis at pH 7.0 with rate constants at 0, 21 and 37°C of 0.0006, 0.006 and 0.07 h?1, respectively. This effect is small compared to the effect of enzymatic hydrolysis under comparable conditions. Mg2+ present in excess of AdoPP[NH]P reduces the rate constant of the spontaneous hydrolysis to 0.005 h?1 at 37°C, indicating that the MgAdoPP[NH]P complex is virtually stable to spontaneous hydrolysis, as is also the case for its enzymatic hydrolysis. (3) A practical consequence of these findings is that AdoPP[NH]P binding studies in the presence of Na+ + Mg2+ with enzyme concentrations in the mg/ml range are not possible at temperatures above 0°C. On the other hand, determination of affinity in the (Na+ + K+)-ATPase reaction by competition with ATP at low protein concentrations (μg/ml range) remains possible without significant hydrolysis of AdoPP[NH]P even at 37°C.  相似文献   

8.
Glycogen synthase kinase 3β (GSK3β) is a ubiquitous serine/threonine kinase that plays a pivotal role in many biological processes. GSK3β catalyzes the transfer of γ‐phosphate of ATP to the unique substrate Ser/Thr residues with the assistance of two natural activating cofactors Mg2+. Interestingly, the biological observation reveals that a non‐native Ca2+ ion can inhibit the GSK3β catalytic activity. Here, the inhibitory mechanism of GSK3β by the displacement of native Mg2+ at site 1 by Ca2+ was investigated by means of 80 ns comparative molecular dynamics (MD) simulations of the GSK3β···Mg2+‐2/ATP/ Mg2+‐1 and GSK3β···Mg2+‐2/ATP/Ca2+‐1 systems. MD simulation results revealed that using the AMBER point charge model force field for Mg2+ was more appropriate in the reproduction of the active site architectural characteristics of GSK3β than using the magnesium‐cationic dummy atom model force field. Compared with the native Mg2+ bound system, the misalignment of the critical triphosphate moiety of ATP, the erroneous coordination environments around the Mg2+ ion at site 2, and the rupture of the key hydrogen bond between the invariant Lys85 and the ATP Oβ2 atom in the Ca2+ substituted system were observed in the MD simulation due to the Ca2+ ion in active site in order to achieve its preferred sevenfold coordination geometry, which adequately abolish the enzymatic activity. The obtained results are valuable in understanding the possible mechanism by why Ca2+ inhibits the GSK3β activity and also provide insights into the mechanism of Ca2+ inhibition in other structurally related protein kinases. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
In the presence of 1.0 mM ATP and MgCl2, the specific viscosity of suspensions of human erythrocyte ghosts decreases 35% in 20 minutes at 22°C. The changes in viscosity are a sensitive index of Mg-ATP dependent shape changes in these membranes. Low concentrations of Ca2+ (1 to 5 μM) inhibit Mg-ATP dependent viscosity changes. If ghosts were preincubated with 1 mM Mg-ATP and 20 μM A23187 to produce a maximal decrease in viscosity, addition of 10 μM Ca2+ to the preincubated ghosts increased the viscosity to levels observed in ghosts preincubated without ATP. Ca2+ (1 to 5 μM) also inhibited Mg2+ dependent phosphorylation 30% and stimulated dephosphorylation 25% in ghost membranes. These effects of Ca2+ on viscosity and phosphorylation may be due to a membrane bound Ca2+ phosphatase activity which dephosphorylates membranes phosphorylated by a Mg2+ dependent kinase activity.  相似文献   

10.
(1) The effects of calmodulin binding on the rates of Ca2+-dependent phosphorylation and dephosphorylation of the red-cell Ca2+ pump, have been tested in membranes stripped of endogenous calmodulin or recombined with purified calmodulin. (2) In Mg2+-containing media, phosphorylation and dephosphorylation rates are accelerated by a large factor (at 0°C), but the steady-state level of phosphoenzyme is unaffected by calmodulin binding (at 0°C and 37°C). In Mg2+-free media, slower rates of phosphoenzyme formation and hydrolysis are observed, but both rates and the steady-state phosphoenzyme level are raised following calmodulin binding. (3) At 37°C and 0°C, the rate of (Ca2+ + Mg2+)-ATPase activity is stimulated maximally by 6–7-fold, following calmodulin binding. At 37°C the apparent Ca2+ affinity for sustaining ATP hydrolysis is raised at least 20-fold, Km(Ca) ? 10 μM (—calmodulin) and Km(Ca) < 0.5 μM (+ calmodulin), but at 0°C the apparent Ca2+ affinity is very high in calmodulin-stripped membranes and little or no effect of calmodulin is observed (Km(Ca) ? 3–4 · 10-8 M). (Ca2+ + Mg2+)-ATPase activity in calmodulin activated membranes and at saturating ATP levels, is sharply inhibited by addition of calcium in the range 50–2000 μM. (4) A systematic study of the effects of the nucleotide species MgATP, CaATP and free ATP on (Ca2+ + Mg2+)-ATPase activity in calmodulin-activated membranes reveals: (a) In the 1–10 μmolar concentration range MgATP, CaATP and free ATP appear to sustain (Ca2+ + Mg2+)-ATPase activity equally effectively. (b) In the range 100–2000 μM, MgATP accelerates ATP hydrolysis (Km(MgATP) ? 360 μM), and CaATP is an inhibitor (Ki(CaATP) ? 165 μM), probably competing with MgATP fo the regulatory site. (5) The results suggest that calmodulin binding alters the conformational state of the Ca2+- pump active site, producing a high (Ca2+ + Mg2+)-ATPase activity, high Ca2+ affinity and regulation of activity by MgATP.  相似文献   

11.
ATP production in mitochondria depends on the nuclear spin and magnetic moment of Mg2+ ion in creatine kinase and ATPase. Consequently, the enzymatic synthesis of ATP is an ion-radical process and depends on the external magnetic field and microwave fields that control the spin states of ion-radical pairs and influence the ATP synthesis. The chemical mechanism of ATP synthesis and the origin of biological effects of electromagnetic (microwave) fields are discussed.  相似文献   

12.
The rates of adenosine triphosphate (ATP) production by isolated mitochondria and mitochondrial creatime kinase incubated in isotopically pure media containing, separately, 24Mg2+, 25Mg2+, and 26Mg2+ ions were shown to be strongly dependent on the magnesium nuclear spin and magnetic moment. The rate of adenosine 5′-diphosphate phosphorylation in mitochondria with magnetic nuclei25Mg is about twice higher than that with the spinless, nonmagnetic nuclei24.26Mg. When mitochondrial oxidative phosphorylation was selectively blocked by treatment with 1-methylnicotine amide, 25Mg2+ ions were shown to be nearly four times more active in mitochondrial ATP synthesis than 24,26Mg2+ ions. The rate of ATP production associated with creatine kinase is twice higher for 25Mg2+ than for 24.26Mg and does not depend on the blockade of oxidative phosphorylation. There is no difference between 24Mg2+ and 26Mg2+ effects in both oxidative and substrate phophorylation. These observations demonstrate that the enzymatic phosphorylation is a nuclear spin selective process controlled by magnetic isotope effect. The reaction mechanism proposed includes a participation of intermediate ion-radical pairs with Mg+ cation as a radical partner. Therefore, the key mitochondrial phosphotransferases work as a magnesium nuclear spin mediated molecular machines.  相似文献   

13.
The Mg2+-dependency of Ca2+-induced ATP hydrolysis is studied in basolateral plasma membrane vesicles from rat kidney cortex in the presence of CDTA and EGTA as Mg2+- and Ca2+-buffering ligands. ATP hydrolysis is strongly stimulated by Mg2+ with a Km of 13 μ M in the absence or presence of 1 μ M free Ca2+. At free Mg2+ concentrations of 1 μ M and lower, ATP hydrolysis is Mg2+ -independent, but is strongly stimulated by submicromolar Ca2+ concentrations Km  0.25 μM, Vmax  24 μmol Pi/h per mg protein). The Ca2+-stimulated ATP hydrolysis strongly decreases at higher Mg2+ concentrations. The Ca2+-stimulated Mg2+-independent ATP hydrolysis is not affected by calmodulin or trifluoperazine and shows no specificity for ATP over ADP, ITP and GTP. In contrast, at high Mg2+ concentrations calmodulin and trifluoperazine affect the high affinity Ca2+-ATPase activity significantly and ATP is the preferred substrate. Control studies on ATP-dependent Ca2+-pumping in renal basolaterals and on Ca2+-ATPase in erythrocyte ghosts suggest that the Ca2+-pumping enzyme requires Mg2+. In contrast, a role of the Ca2+-stimulated Mg2+-independent ATP hydrolysis in active Ca2+ transport across basolateral membranes is rather unlikely.  相似文献   

14.
An ATPase activity stimulated by divalent ions (Mg2+, Ca2+, Mn2+, Zn2+) has been observed in intact hamster fibroblasts cultured in vitro (BHK line). Such activity has been determined by the incubation (30 min at 37°C) of washed cell suspensions (about 1 mg of proteins) in a medium containing 100 mM NaCl, 20 mM KCl, 15 mM Tris—HCl (pH 7.4), 10 mM NaHCO3, 5 mM glucose and equimolar concentrations of ATP and divalent cation. Mg2+-ATPase activity is insensitive to ouabain and lacks specificity towards nucleoside triphosphate substrates. AMP and ADP are not hydrolyzed under these conditions. Apparent Km of 0.76 mM and Vmax of 1.46 μmol Pi · mg proteins?1 · h?1 have been calculated for Mg-ATP complex. This ATPase is an ectoenzyme, therefore its activity could be used as a suitable index of the action of chemicals like chromium compounds known for their cytotoxic effects on membrane functions.Salts of trivalent (CrCl3) and hexavalent (K2Cr2O7) chromium at concentrations ranging from 1 mM to 5 mM inhibit Mg2+-ATPase. The inhibition by K2Cr2O7 is observed after pretreatment of the cells with this compound followed by its absence from the assay medium “per se” for Mg2+-ATPase, and it is referred to the alterations of membrane bound enzyme structures by the oxidizing hexavalent chromium. The inhibition by CrCl3 is mainly evident when this compound is present in the incubation medium, and is referred to the interaction of trivalent chromium with Mg2+-ATP as it is partially reversed by increasing Mg2+-ATP concentration.  相似文献   

15.
Free ribulose bisphosphate (RuBP4?) rather than its magnesium complex (RuBP-Mg2?) was the apparent substrate for spinach ribulose bisphosphate carboxylase/oxygenase. The apparent Km for total RuBP (pH 8.0 at 30° C) increased with increasing Mg2+ concentrations from 11.6 μM at 13.33 mM Mg2+ to 32.6 μM at 40.33 mM Mg2+. Similarly the apparent Km for RuBP-Mg2? complex increased with increasing Mg2+ from 9.4 μM at 13.33 mM Mg2+ to 29.7 μM at 40.33 mM Mg2+. However, the Km values for uncomplexed RuBP4? were independent of the (saturating) concentration of Mg2+ (Km=2.2 μM). The Vmax did not vary with the changing concentrations of Mg2+. In contrast, the Km for total RuBP remained constant with varying Mg2+ concentrations (Km=59.5 μM) for the enzyme from R. rubrum. The apparent Km for the RuBP-Mg2? complex decreased with increasing Mg2+ concentrations from 16.0 μM at 7.5 mM Mg2+ to 5.9 μM at 27.5 mM Mg2+. The initial velocity for the C. vinosum enzyme was also found to be independent of the (saturating) concentration of Mg2+ when total RuBP was varied in the assay. Thus the response to total RuBP by these two bacterial enzymes, which markedly differ in structure, was closely similar.  相似文献   

16.
A complete kinetic analysis of the forward mitochondrial creatine kinase reaction was conducted to define the mechanism for its rate enhancement when coupled to oxidative phosphorylation. Two experimental systems were employed. In the first, ATP was produced by oxidative phosphorylation. In the second, heart mitochondria were pretreated with rotenone and oligomycin, and ATP was regenerated by a phosphoenolpyruvate-pyruvate kinase system. Product inhibition studies showed that oxidative phosphorylation did not effect the binding of creatine phosphate to the enzyme. Creatine phosphate interacted competitively with both ATP and creatine, and the E · MgATP · CrP dead-end complex was not readily detected. In a similar manner, the dissociation constants for creatine were not influenced by the source of ATP: Kib = 29 mm; Kb = 5.3 mM, and the maximum velocity of the reaction was unchanged: V1 = 1 μmol/ min/mg. Slight differences were noted for the dissociation constant (Kia) of MgATP from the binary enzyme complex, E · MgATP. The values were 0.75 and 0.29 mm in the absence and presence of respiration. However, a 10-fold decrease in the steady-state dissociation constant (Ka) of MgATP from the ternary complex, E · MgATP · creatine, was documented: 0.15 mm with exogenous ATP and 0.014 mm with oxidative phosphorylation. Since Kia × Kb does not equal Ka × Kib under respiring conditions, the enzyme appears to be altered from its normal rapid-equilibrium random binding kinetics to some other mechanism by its coupling to oxidative phosphorylation.  相似文献   

17.
Bovine thyroid tissue exhibited cAMP-dependent and Ca2+-dependent protien kinase activities as well as a basal (cAMP- and Ca2+-independent) one, and phosphoprotein phosphatase activity. Although the former two protein kiniase activities were not clearly demonstrated using endogenous protein as substrate, they were clearly shown in soluble, particulate and plasma membrane fractions using exogenous histones as substrate. The highest specific activities were in the plasma membrane. The apparent Km values of cAMP and Ca2+ for the membrane-bound protein kinase were 5·10?8 M and 8.3·10?4M (in the presence of 1 mM EGTA), respectively. The apparent Km values of Mg2+ were 7·10?4 M (without cAMP and Ca2+, 5·10?4 M (with cAMP) and 1.3·10?3 M (with Ca2+), and those ATP were 3.5·10?5 M (with or without cAMP) and 8.5·10?5 M (with Ca2+). The Ca2+-dependent protein kinase could be dissociated from the membrane by EGTA-washing. The enzyme activity so released was further activated by added phospholipid (phosphatidylserine/1,3-diolein), but not by calmodulin. Phosphoprotein phosphatase activity was also clearly demonstrated in all of the fractions using 32P-labeled mixed histones as substrate. The activity was not modified by either cAMP or Ca2+, but was sitmulated by a rather broad range (5–25 mM) of Mg2+ and Mn2+. NaCl and substrate concentrations also influenced the activity. Pyrophosphate, ATP, inorganic phosphate and NaF inhibited the activity in a dose-dependent manner. Trifluoperazine, chlorpromazine, dibucaine and Triton X-100 (above 0.05%, w/v) specifically inhibited the Ca2+-dependent protein kinase in plasma membranes. Repetitive phosphorylation of intrinsic and extrinsic proteins by the membrane-bound enzyme activities clearly showed an important co-ordination of them at the step of protein phosphorylation. These findings suggest that these enzyme activities in plasma membranes may contribute to regulation of thyroid function in response to external stimuli.  相似文献   

18.
Free ribulose hisphosphate (RuBP4?) rather than its magnesium complex (RuBP-Mg2?) was the apparent substrate for spinach ribulose bisphosphate carboxylase/oxygenase. The apparent Km for total RuBP (pH 8.0 at 30° C) increased with increasing Mg2+ concentrations from 11.6 μM at 13.33 mM Mg2+ to 32.6 μM at 40.33 mM Mg2+. Similarly the apparent Km for RuBP-Mg2? complex increased with increasing Mg2+ from 9.4 μM at 13.33 mM Mg2+ to 29.7 μM at 40.33 mM Mg2+. However, the Km values for uncomplexed RuBP4? were independent of the (saturating) concentration of Mg2+ (Km=2.2 μM). The Vmax did not vary with the changing concentrations of Mg2+. In contrast, the Km for total RuBP remained constant with varying Mg2+ concentrations (Km=59.5 μM) for the enzyme from R. rubrum. The apparent Km for the RuBP-Mg2? complex decreased with increasing Mg2+ concentrations from 16.0 μM at 7.5 mM Mg2+ to 5.9 μM at 27.5 mM Mg2+. The initial velocity for the C. vinosum enzyme was also found to be independent of the (saturating) concentration of Mg2+ when total RuBP was varied in the assay. Thus the response to total RuBP by these two bacterial enzymes, which markedly differ in structure, was closely similar.  相似文献   

19.
The magnesium buffer coefficient (B Mg) was calculated for BC3H-1 cells from the rise in cytosolic Mg2+ activity observed when magnesium was released from ATP after iodoacetate (IAA) and NaCN treatment. The basal cytosolic Mg2+ activity (0.54±0.1 mM) measured with mag-fura-2 doubled when 4.54 mM magnesium was liberated from ATP:B Mg was 12.9 indicating that a 1 mM increase in Mg2+ activity requires an addition of about 13 mM magnesium. The accuracy of this value depends on these assumptions: (a) all of the magnesium released from ATP stayed in the cells; (b) the rise in Mg2+ was not secondary to pH-induced changes inB Mg; (c) mag-fura-2 measured Mg2+ and not Ca2+; and (d) the accuracy of the mag-fura-2 calibration. Total magnesium did not change in response to IAA/CN treatment, thus the change in Mg2+ activity reflected a redistribution of cell magnesium. pH changes induced by NH4Cl pulse and removal had little effect on Mg2+ activity and the changes were slower than and opposite to pH-induced changes in Ca2+ activity measured by fura-2. Ca2+ responses were temporally uncopled from Mg2+ responses when the cells were treated with IAA only and in no cases did Ca2+ levels rise above 1 M, showing that the mag-fura-2 is responding to Mg2+. Additional studies demonstrated that 90% of the mag-fura-2 signal was cytosolic in origin. The remaining non-diffusible mag-fura-2 either was bound to cytosolic membranes or sequestered in organelles with the fluorescence characteristics of the Mg2+-complexed form, even when cytosolic free Mg2+ activity was approximately 0.5 mM. This bound mag-fura-2 would appear to increase the Kd and thus clearly limits the accuracy of our estimmate forB Mg. Despite this limitation, we demonstrate that Mg2+ is tightly regulated in face of large changes in extracellular Mg2+, and that the interplay observed between pH, Ca2+ and Mg2+ activities strongly supports the hypothesis that these factors interact through a shared buffer capacity of the cell.  相似文献   

20.
The vast majority of serine/threonine protein kinases have a strong preference for ATP over GTP as a phosphate donor. CK2 (Casein kinase 2) is an exception to this rule and in this study we investigate whether calcium/calmodulin-dependent protein kinase II (CaMKII) has the same extended nucleotide range. Using the Drosophila enzyme, we have shown that CaMKII uses Mg2+GTP with a higher Km and Vmax compared to Mg2+ATP. Substitution of Mn2+ for Mg2+ resulted in a much lower Km for GTP, while nearly abolishing the ability of CaMKII to use ATP. These similar results were obtained with rat αCaMKII, showing the ability to use GTP to be a general property of CaMKII. The Vmax difference between Mg2+ATP and Mg2+GTP was found to be due to the fact that ADP is a potent inhibitor of phosphorylation, while GDP has modest effects. There were no differences found between sites autophosphorylated by ATP and GTP, either by partial proteolysis or mass spectrometry. Phosphorylation of fly head extract revealed that similar proteins are substrates for CaMKII whether using Mg2+ATP or Mg2+GTP. This new information confirms that CaMKII can use both ATP and GTP, and opens new avenues for the study of regulation of this kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号