首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extinction and the loss of functional diversity   总被引:6,自引:0,他引:6  
Although it is widely thought to influence ecosystem processes, there is little consensus on an appropriate measure of functional diversity. The two major perspectives, to date, are to assume that every species is functionally unique, or to assume that some species are functionally identical, such that functional groups exist. Using a continuous measure of functional diversity (FD) derived from the quantitative functional traits of species, we show that the loss of functional diversity from six natural assemblages was rapid compared with rates of loss from comparable simulated assemblages. Loss of FD occurred faster than loss of functional-group diversity in four of the six natural assemblages. Patterns of functional-group diversity loss depended on the number of functional groups and the number of species in an assemblage. Extinctions that occurred first for species with particular traits (e.g. low leaf nitrogen concentration, deep roots and large body size) caused greater loss of FD than expected by chance in four of the six natural assemblages. In two real assemblages, these trait-dependent extinctions had more severe effects on FD than our simulated worst-case extinction scenario. These data suggest that conserving a large proportion of the functional traits of species requires conserving a large proportion of all species.  相似文献   

2.
Phylogenetic diversity (PD, the diversity of lineages) and functional diversity (FD, the diversity of functional traits or groups in a biological community) reflect important yet poorly understood attributes of species assemblages. Until recently, few studies have examined the spatial variation of PD and FD in natural communities. Yet the relationships between PD and FD and area (termed PDAR and FDAR), like the analogous species–area relationship (SAR), have received less attention and may provide insights into the mechanisms that shape the composition and dynamics of ecological communities. In this study, we used four spatial point process models to evaluate the likely roles of the random placement of species, habitat filtering, dispersal limitation, and the combined effects of habitat filtering and dispersal limitation in producing observed PDARs and FDARs in two large, fully mapped temperate forest research plots in northeast China and in north‐central USA. We found that the dispersal limitation hypothesis provided a good approximation of the accumulation of PD and FD with increasing area, as it did for the species area curves. PDAR and FDAR patterns were highly correlated with the SAR. We interpret this as evidence that species interactions, which are often influenced by phylogenetic and functional similarity, may be relatively unimportant in structuring temperate forest tree assemblages at this scale. However, the scale‐dependent departures of the PDAR and FDAR that emerged for the dispersal limitation hypothesis agree with operation of competitive exclusion at small scales and habitat filtering at larger scales. Our analysis illustrates how emergent community patterns in fully mapped temperate forest plots can be influenced by multiple underlying processes at different spatial scales.  相似文献   

3.
Understanding how the biodiversity of freshwater fish assemblages changes over time is an important challenge. Until recently most emphasis has been on taxonomic diversity, but it is now clear that measures of functional diversity (FD) can shed new light on the mechanisms that underpin this temporal change. Fish biologists use different currencies, such as numerical abundance and biomass, to measure the abundance of fish species. Nonetheless, because they are not necessarily equivalent, these alternative currencies have the potential to reveal different insights into trends of FD in natural assemblages. In this study, the authors asked how conclusions about temporal trends in FD are influenced by the way in which the abundance of species has been quantified. To do this, the authors computed two informative metrics, for each currency, for 16 freshwater fish assemblages in Trinidad's Northern Range that had been surveyed repeatedly over 5 years. The authors found that numerical abundance and biomass uncover different directional trends in these assemblages for each facet of FD, and as such inform hypotheses about the ways in which these systems are being restructured. On the basis of these results, the authors concluded that a combined approach, in which both currencies are used, contributes to our understanding of the ecological processes that are involved in biodiversity change in freshwater fish assemblages.  相似文献   

4.
Functional diversity: back to basics and looking forward   总被引:16,自引:0,他引:16  
Functional diversity is a component of biodiversity that generally concerns the range of things that organisms do in communities and ecosystems. Here, we review how functional diversity can explain and predict the impact of organisms on ecosystems and thereby provide a mechanistic link between the two. Critical points in developing predictive measures of functional diversity are the choice of functional traits with which organisms are distinguished, how the diversity of that trait information is summarized into a measure of functional diversity, and that the measures of functional diversity are validated through quantitative analyses and experimental tests. There is a vast amount of trait information available for plant species and a substantial amount for animals. Choosing which traits to include in a particular measure of functional diversity will depend on the specific aims of a particular study. Quantitative methods for choosing traits and for assigning weighting to traits are being developed, but need much more work before we can be confident about trait choice. The number of ways of measuring functional diversity is growing rapidly. We divide them into four main groups. The first, the number of functional groups or types, has significant problems and researchers are more frequently using measures that do not require species to be grouped. Of these, some measure diversity by summarizing distances between species in trait space, some by estimating the size of the dendrogram required to describe the difference, and some include information about species' abundances. We show some new and important differences between these, as well as what they indicate about the responses of assemblages to loss of individuals. There is good experimental and analytical evidence that functional diversity can provide a link between organisms and ecosystems but greater validation of measures is required. We suggest that non-significant results have a range of alternate explanations that do not necessarily contradict positive effects of functional diversity. Finally, we suggest areas for development of techniques used to measure functional diversity, highlight some exciting questions that are being addressed using ideas about functional diversity, and suggest some directions for novel research.  相似文献   

5.
Different components of biodiversity may vary independently of each other along environmental gradients giving insights into the mechanisms that regulate species coexistence. In particular, the functional diversity (FD) or the presence of rare or endemic species in natural assemblages do not necessarily increase with species diversity. We studied if different components of plant species diversity (species richness, Simpson diversity, evenness) varied similarly to FD (measured as a generalization of the Simpson index) and rarity along grazing intensity and climatic gradients. Plots under different sheep grazing regimes (high and low intensity, abandonment) were surveyed in five locations along a climatic gradient in north-eastern Spain, from semi-arid lowland to moist upland locations. Variation in species diversity, functional diversity and rarity followed different patterns. Species diversity was lowest in water-stressed environments (arid locations and southern aspects) and increased with grazing more makedly in humid locations. The FD was comparable between the most species-poor and species-rich locations and decreased with grazing in the moistest location, i.e. where species diversity markedly increased. The FD did not show a strong correlation with species richness nor with the Simpson index and less specious communities could show the highest functional diversity. The rarest species in the region were more frequently found in the abandoned areas, which held the lowest species diversity. Consequently, the mechanisms that enhance the diversity of species do not necessarily support a functional differentiation among those species or the maintenance of rare species in a region. We hypothesize that the degree of dependence of functional diversity on species diversity might be mostly related to the amplitude of the species' traits pool and on how species partition the niche space available.  相似文献   

6.
The effects of species loss on ecosystems depend on the community’s functional diversity (FD). However, how FD responds to environmental changes is poorly understood. This applies particularly to higher trophic levels, which regulate many ecosystem processes and are strongly affected by human-induced environmental changes. We analyzed how functional richness (FRic), evenness (FEve), and divergence (FDiv) of important generalist predators—epigeic spiders—are affected by changes in woody plant species richness, plant phylogenetic diversity, and stand age in highly diverse subtropical forests in China. FEve and FDiv of spiders increased with plant richness and stand age. FRic remained on a constant level despite decreasing spider species richness with increasing plant species richness. Plant phylogenetic diversity had no consistent effect on spider FD. The results contrast with the negative effect of diversity on spider species richness and suggest that functional redundancy among spiders decreased with increasing plant richness through non-random species loss. Moreover, increasing functional dissimilarity within spider assemblages with increasing plant richness indicates that the abundance distribution of predators in functional trait space affects ecological functions independent of predator species richness or the available trait space. While plant diversity is generally hypothesized to positively affect predators, our results only support this hypothesis for FD—and here particularly for trait distributions within the overall functional trait space—and not for patterns in species richness. Understanding the way predator assemblages affect ecosystem functions in such highly diverse, natural ecosystems thus requires explicit consideration of FD and its relationship with species richness.  相似文献   

7.
Habitat discontinuity is one of the main causes of diversity reduction in lotic ecosystems. We tested the predictions of the Serial Discontinuity Concept (SDC) caused by small reservoirs on the functional diversity (FD) of Chironomidae assemblages in Neotropical Savanna streams. We obtained taxonomic information from segments upstream and downstream of small reservoirs. In addition, abiotic variables, such as stream segment width, flow velocity, dissolved oxygen, pH, conductivity, water temperature, and organic matter were measured. We analyzed the Chironomidae assemblage FD using the functional richness (FRic), functional dispersion (FDis), trait relevance, as well as the species richness metrics. We used a non-parametric paired tests to compare differences in the FD indices, species richness, and the abiotic variables between the upstream and downstream segments. The results suggest that there were reductions in the FRic, FDis, species richness, and organic matter percentage below reservoirs. Moreover, depth, width, and dissolved oxygen increased in the downstream segments. The discontinuity length presented a negative influence in the FD indexes toward downstream segments as proposed by the SDC theory. We concluded that the discontinuity length affected the dispersal ability of some Chironomidae taxa, causing richness reduction and dissimilarity in the assemblages’ functional traits toward downstream stretches.  相似文献   

8.
1. Recent work has emphasised the benefit of using functional measures when relating biodiversity to ecosystem functioning. In this study, we investigated the extent to which functional and taxonomic diversity might be related to summed biovolume in community assemblages of 212 species of diatoms collected from 65 temperate lakes in western and central Quebec, Canada. 2. We quantified functional diversity as both the total path‐length of a functional dendrogram (FD) and the variance in species traits (TV) for a given community. Selected traits included both size and responses to a set of environmental variables known to be influential for diatom communities. 3. Species richness, as well as both FD and TV, was positively associated with total diatom biovolume at the level of the entire diatom community, suggesting that diversity in response types (particularly to total phosphorus and pH) is important for diatom community production. 4. Although functional measures of diversity did not provide enhanced explanatory power over species richness, we argue that an exploration of functional traits potentially allows greater insight into the mechanisms underlying biodiversity–ecosystem functioning relations, indicating which traits might be most influential in driving community biomass production.  相似文献   

9.
The taxonomic diversity (TD) of tropical flora and fauna tends to increase during secondary succession. This increase may be accompanied by changes in functional diversity (FD), although the relationship between TD and FD is not well understood. To explore this relationship, we examined the correlations between the TD and FD of ants and forest age in secondary forests at the α‐ and β‐diversity levels using single‐ and multi‐trait‐based approaches. Our objectives were to understand ant diversity patterns and to evaluate the role of secondary forests in the conservation of biodiversity and in the resilience of tropical forests. Ant assemblages were sampled across a chronosequence in the Lacandon region, Mexico. All species were characterized according to 12 functional ecomorphological traits relevant to their feeding behavior. We found that TD and FD were related to forest age at the alpha level, but not at the beta level. α‐functional richness and divergence increased linearly with species richness and diversity, respectively. Also, the relationship between taxonomic and functional turnover was linear and positive. Our results indicated that functional traits were complementary across the chronosequence. The increase in FD was mainly driven by the addition of rare species with relevant traits. The older secondary forests did not recover all of the functions of old growth forest but did show a tendency to recovery. Because older successional stages support more TD and FD, we suggest developing agriculture and forestry management practices that facilitate rapid post‐agricultural succession and thereby better preserve the functionality of tropical forests.  相似文献   

10.

Aim

If evolutionary distance is akin to evolutionary chance, then it follows that species assemblages that are distantly related will also be more disparate in terms of their traits, features and the niches they occupy. Yet, studies have found that the total phylogenetic distance of an assemblage, known as phylogenetic diversity, is an unreliable surrogate for functional diversity. We investigate global variation in the relationship between Faith's phylogenetic diversity (PD) and mean pairwise functional distance (MPFD) across latitude and the influence of migratory species on both these aspects of diversity.

Location

Global.

Time period

Present day.

Major taxa studied

Birds.

Methods

We measure PD and MPFD for over 9000 species of bird across more than 17,000 globally distributed assemblages. We obtain standardised effect sizes for both indices by simulating assemblage composition under an ecologically informed null model. We employ path analysis to characterize variation in the relationship between PD's and MPFD across latitude, elevation and with proportion of migratory species.

Results

Globally, assemblages that were phylogenetically diverse tended to be less functionally dispersed than expected; however, this relationship showed considerable variation across latitude decreasing with distance from the equator. The proportion of migratory species in an assemblage was found to be an important predictor of functional diversity, with migrant rich assemblages generally showing less functional diversity than expected. We identify the Andes and Hengduan Mountains as regions of exceptional bird functional diversity.

Main conclusions

The relationship between phylogenetic diversity and function diversity is context specific, varying across environmental gradients such as latitude, and influenced by ecological phenomena such as migration. Thus, care should be taken using phylogenetic diversity as a proxy for functional diversity, particularly in clades with sparse functional data. Instead, we recommend that studies consider how phylogenetic diversity's surrogacy for functional diversity may be impacted by environmental context and evaluate empirical observations against biogeographically constrained and ecologically informed null models.  相似文献   

11.
The ecological impacts of landscape modification and urbanisation have transformed the composition of plant and animal assemblages, and altered the condition of ecosystems globally. Landscape transformation influences the spatial distribution of species and ecological functions by selecting for generalist species with wide ecological niches, which can adapt to opportunities in highly-modified environments. These effects of landscape modification can shape functional diversity on land, but it is not clear whether they have similar functional consequences in the sea. We used estuaries as a model system to test how landscape transformation alters functional diversity in coastal seascapes, and measured how variation in level of urbanisation, catchment modification and habitat loss influenced fish diversity across thirty-nine estuaries in eastern Australia. Fish were surveyed with baited remote underwater video stations and functional diversity was indexed with three metrics that describe variation in the functional traits and niche space of assemblages. The extent of landscape transformation in the catchment of each estuary was associated with variation in the functional diversity of estuarine fish assemblages. These effects were, however, not what we expected as functional diversity was highest in modified estuaries that supported a large area of both urban and grazing land in their catchments, were bordered by a small area of natural terrestrial vegetation and that contained a moderate area of mangroves. Zoobenthivores and omnivores dominated assemblages in highly-modified estuaries, and piscivorous fishes were common in natural waterways. Our results demonstrate, that the modification and urbanisation of ecosystems on land can alter functional diversity in the sea. Intense landscape transformation appears to select for abundant generalists with wide trophic niches, and against species with specialised diets, and we suggest that these changes might have fundamental consequences for ecosystem functioning in estuaries, and other highly modified seascapes.  相似文献   

12.
Climate warming affects biodiversity distribution across all ecosystems. However, beyond changes in species richness, impacts on other biodiversity components are still overlooked, particularly in the marine realm. Here we forecasted the potential effect of climate warming on the phylogenetic and functional components of coastal Mediterranean fish biodiversity. To do so, we used species distribution models to project the potential distribution of 230 coastal fish species by the end of the 21st century based on the IPCC A2 scenario implemented with the Mediterranean climatic model NEMOMED8. From these projections, we assessed the changes in phylogenetic (PD) and functional diversity (FD) of fish assemblages at multiple spatial scales using a dated molecular phylogeny and an extensive functional trait database. At the scale of the entire Mediterranean Sea, the projected extinctions of 40 coastal fish species would lead to a concomitant erosion of PD and FD (13.6 and 3%, respectively). However, a null model revealed that species loss at this scale would not lead to a disproportionate erosion of PD and FD. Similar results were found when considering fish assemblages at the grid cell scale. Indeed, at this scale, the projected changes in species richness would lead to unexpected losses of PD and FD for localized and small areas only. A disproportionate erosion of PD under climate warming was only forecasted when analysing fish assemblages at an intermediate spatial scale, namely the Mediterranean marine ecoregions. Overall, our results emphasize the importance of considering multiple spatial scales when assessing potential impacts of climate warming on the multiple components marine biodiversity.  相似文献   

13.
We discuss a diversity measure combining information of relative abundances and taxonomic distinctiveness suggested by Ricotta (2004). We show that Ricotta's measure violates weak species monotonicity, a condition that requires that the addition of a species should always increase a diversity index if abundances change only marginally. We suggest an alternative index satisfying weak species monotonicity and apply it to the 'Zeesserveld' forest reserve in the Netherlands.  相似文献   

14.
Resilience is a general concept that aims to help understand how ecosystems respond to disturbances such as extinctions and invasions. Here, we propose a measure of one aspect of resilience, R X , which is one minus the expected change in functional diversity (X) caused by a species extinction or addition. We show how two components of biodiversity, species richness and functional diversity, and the structure of regional species pools affect this measure. Variation in species richness and in functional diversity have opposite effects on R X . Speciose assemblages generally have higher R X than depauperate ones, whereas functionally diverse assemblages have low R X relative to functionally depauperate ones. The effect of an extinction on R X reflects this tradeoff. In our analyses, extinctions usually cause only a small decrease in both functional diversity and R X . However, extinctions sometimes cause a large reduction in functional diversity and then tend to increase R X . Regional assemblages containing all rather unique species tend to result in speciose assemblages with relatively low R X and in low richness assemblages with relatively high R X . The opposite is true of regional assemblages containing functionally similar species. Information about the processes that structure regional assemblages will therefore increase understanding of ecosystem resilience. Generally, these results suggest that management for biodiversity may not always result in management for resilience.  相似文献   

15.
16.
Fine-scale spatial heterogeneity influences biodiversity and ecosystem productivity at many scales. In savanna systems, Macrotermes termites, through forming spatially explicit mounds with unique woody plant assemblages, emerge as important sources of such heterogeneity. Despite a growing consensus regarding the importance of functional diversity (FD) to ecosystem processes, no study has quantified how termite mounds affect woody plant FD. We address whether termite mounds alter the distribution of functional traits, and increase FD of woody plant communities within Africa’s largest savanna woodland, the 2.7 million km2 miombo system. Using plant traits that change according to soil resources (for example, water and nutrients), and disturbance (for example, fire and elephant herbivory), we identified response functional groups and compared relative representation of these groups between mound and matrix habitats. We also asked whether mound and matrix habitats differed in their contribution to FD within the system. Although species representing most functional groups were found in both mound and matrix habitats, relative abundance of functional groups differed between mound and matrix. Mound plant assemblages had greater response diversity to soil resources than matrix plots, but there was no difference in response diversity to disturbance. High trait values on mounds included tree height, leaf nitrogen, phosphorus, and palatability. Species with root ectomycorrhizae dominated the matrix. In conclusion, these small patches of nutrient-enriched substrate emerge as drivers of FD in above-ground woody plant communities.  相似文献   

17.
Functional diversity (FD), species richness and community composition   总被引:15,自引:0,他引:15  
Functional diversity is an important component of biodiversity, yet in comparison to taxonomic diversity, methods of quantifying functional diversity are less well developed. Here, we propose a means for quantifying functional diversity that may be particularly useful for determining how functional diversity is related to ecosystem functioning. This measure of functional diversity “FD” is defined as the total branch length of a functional dendrogram. Various characteristics of FD make it preferable to other measures of functional diversity, such as the number of functional groups in a community. Simulating species' trait values illustrates how the relative importance of richness and composition for FD depends on the effective dimensionality of the trait space in which species separate. Fewer dimensions increase the importance of community composition and functional redundancy. More dimensions increase the importance of species richness and decreases functional redundancy. Clumping of species in trait space increases the relative importance of community composition. Five natural communities show remarkably similar relationships between FD and species richness.  相似文献   

18.
The Atlantic Forest domain, one of the 25 world's hotspots for biodiversity, has experienced dramatic changes in its landscape. While the loss of species diversity is well documented, functional diversity has not received the same amount of attention. In this study, we evaluated functional diversity of insects in streams utilizing three indices: functional diversity (FD), functional dispersion (FDis), and functional divergence (FDiv), seeking to understand the roles of three predictor sets in explaining functional patterns: (1) bioclimatic and landscape variables; (2) spatial variables; and (3) local environmental variables. We determined the amount of variation in different measures of functional diversity that was explained by each predictor set and their interplays using variation partitioning. Our study showed that variation in functional diversity is better explained by a set of variables linked to different scales dependent on spatial structures, indicating the importance of landscape and mainly environmental variables in the functional organization of aquatic insect communities, and that the relative importance of predictor sets depends on the indices considered. Variation in FD was better explained by the interplay among the three predictor sets and by local environmental variables, whereas variation in FDis was better explained by spatial variables and by the interplay between environmental and spatial variables. Variation in FDiv was not significantly explained by any predictors. Our study adds more evidence on the harmful effects caused by landscape changes on biodiversity in the Atlantic Forest, suggesting that these effects also influence the functional organization of stream insect communities.  相似文献   

19.
20.
Little is known about the differences in patterns and drivers between species richness (SR) and functional diversity (FD) in aquatic plants at large scales, and the underlying assembly mechanisms are not well studied. We compared SR and FD patterns of aquatic plant assemblages in 29 subtropical lakes, and detected the underlying assembly rules. Environmental drivers of SR and FD were revealed by GLM and GAM models, and the relative importance of assembly rules was determined by a null model approach. SR and FD of aquatic plants presented different patterns and drivers in this region. SR was significantly correlated with geographic, hydrological and water quality variables. We found a lower functional richness but higher functional evenness and divergence in the highland lakes. There was no significant correlation between functional richness and environmental variables. Null model analyses showed that most values of standardized effect size were located between the confidence interval, indicating a dominance of randomness. Deterministic processes such as limiting similarity and habitat filtering were also important in individual lakes. Habitat filtering plays a stronger role shaping the hydrophyte assemblages especially with the increase of elevation, area and AWLF (amplitude of water level fluctuation). Our results demonstrated that FD, in contrast to SR, were more resistant to environmental variations, and hydrology played an important role in shaping both SR and FD patterns in lake ecosystems. Furthermore, we revealed complex assembly rules and emphasized the importance of both stochastic and deterministic mechanisms in structuring aquatic plant assemblages at the regional scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号