首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Positive effects of fish on algal biomass have variously been attributed to cascading top‐down effects and to nutrient enrichment by fish excretion. 2. Here, we used a combination of field and laboratory approaches to test an additional hypothesis, namely that the physical resuspension of settled algal cells by fish enhances algal biomass and alters community composition. 3. A multi‐lake survey showed that phytoplankton biomass and the fraction of motile algae increased with the concentration of inorganic suspended solids. This correlation could not be explained by wind‐induced resuspension because of the small size of the lakes. 4. In an enclosure experiment, chlorophyll‐a concentration, phytoplankton abundance and inorganic suspended solids increased significantly in the presence of Cyprinus carpio (common carp), but only if the fish had access to the sediment. No such effects were seen when a net prevented carp reaching the sediment. 5. The effects of enhanced nutrients and reduced zooplankton grazing as a result of fish feeding could not (fully) explain these observations, suggesting that the resuspension by carp of settled algae from a surface film on the sediment was the major factor in the outcome of the experiment. 6. An increase in diatoms and green algae (organisms with a relatively large sedimentation velocity) only in enclosures where carp could reach the sediment supported this view. 7. Several lines of evidence indicate that fish‐induced resuspension of algal cells from the sediment is an important mechanism that affects phytoplankton biomass and community composition in shallow lakes.  相似文献   

2.
Lake Kraenepoel (Belgium) is a shallow lake (22 ha), divided in two basins since 1957 by a shallow dike. The lake was used for fish farming until World War II and was drawn down about every 5 years to harvest fish. Despite its dense historical carp population, it had clear water and a rich Littorelletea vegetation. During the course of the 20th century, the lake became eutrophic and the Littorelletea vegetation degraded. The northern basin, which was still drawn down about every decade after 1957, retained its clear water and had a dense submerged macrophyte vegetation. The southern basin, which was never drawn down after 1957 and which received direct surface water inputs, had become a turbid shallow lake with phytoplankton blooms in summer. In 2000, efforts were taken to restore the lake: the entire lake was drawn down, the fish community was biomanipulated, nutrient-rich surface water inputs were diverted from the southern basin and sediments were removed (only in the northern basin). Fish biomanipulation and sediment removal were successful in the northern basin, as nutrient levels declined and the Littorelletea vegetation recovered. In the southern basin, sediment analyses indicated that drawdown resulted in sediments with a lower water and organic matter content and water column turbidity decreased after the drawdown. But pH in the southern basin declined to <4, probably because sulphides in the sediment were oxidized during drawdown and sediment desiccation. In contrast, desiccated sediments were removed from the northern basin and pH did not decline below 6 after restoration. In spite of the still high dissolved nutrient concentrations, phytoplankton biomass declined significantly in the southern basin, probably due to acidification. However, no Littorelletea species colonised the lake bottom in the southern basin. Thus, lake drawdown may be a useful management technique to promote clear water conditions in shallow lakes. However, acidification due to sulphide oxidation may be an undesirable outcome and should be considered in drawdown and sediment desiccation manipulations.  相似文献   

3.
陈纯  李思嘉  肖利娟  韩博平 《生态学报》2013,33(18):5777-5784
浮游植物是水体生态系统敞水区最重要的初级生产者,其组成与多样性反映了群落的结构类型和存在状态。通过围隔实验,模拟水库春季发生的营养盐加富和鱼类放养的干扰,分析在这两种干扰下的浮游植物群落演替过程中优势种和稀有种的变化,并通过以丰度与生物量为变量的香农和辛普森多样性指数的计算,分析浮游植物群落演替过程中的多样性变化特征。结果表明,营养盐加富干扰下的浮游植物群落的优势种变化和演替更为明显,营养盐加富与鱼类添加对浮游植物群落多样性变化的影响符合中度干扰理论。在优势种优势度变化较大的浮游植物群落演替过程中,多样性指数与浮游植物生物量有较高的负相关性。在浮游植物群落演替过程中,香农和辛普森多样性指数的变化趋势基本一致,采用丰度与生物量为变量的两种多样性指数的计算结果对实验系统中浮游植物群落多样性的分析结果没有明显的影响。  相似文献   

4.
1. We examined the effects of nutrients, turbulent mixing, mosquitofish, Gambusia affinis Baird and Girard and sediments on algal composition, algal biomass and autotrophic picoplankton (APP) abundance in a 6-week experiment of factorial design in twenty-four 5-m3 outdoor mesocosms during late autumn 1995.
2. Turbulent mixing decreased surface temperature and increased turbidity, which also was increased by the addition of sediments. Total algal biomass was significantly enhanced by nutrients and mixing, and decreased by the sediment treatment. In the mixing × nutrient treatment, algal biomass increased more than expected from the individual effects, while the fish × mixing and mixing × sediment treatments increased algal biomass less than expected.
3.  Cryptomonas (cryptomonad) blooms were observed in the unmixed, high nutrient treatment; Synedra (diatom) blooms were observed in the high nutrient, high sediment treatment; Ulothrix (green algae) blooms were observed in the mixed, high nutrient, low sediment treatment.
4. Eukaryotic APP abundances were increased by sediment addition and by turbulent mixing, and increased synergistically by mixing × sediment and mixing × nutrient interactions. Prokaryotic APP abundances were decreased by nutrient enhancement and by a mixing × nutrient interaction. There were no main effects of fish on APP abundance, but fish were involved in some of the two–way interactions.
5. The large number of significant interaction effects indicates that APP and other phytoplankton are regulated by a complex set of interdependent factors which should be considered simultaneously in studies of phytoplankton population dynamics and community composition.  相似文献   

5.
In late summer, a large flagellated alga, Gonyostomum semen(Raphidophyceae), constituted most of the phytoplankton biomassin a small steeply-stratified humic lake. Its diel verticalmigration (DVM) was very distinct and extended at night intothe anoxic hypolimnion. After midsummer, the depletion of hypolimneticoxygen led to a gradual release of soluble reactive phosphorus(SRP) from the sediment, but one month later, irrespective ofcontinuing stratification, the concentrations again returnedto undetectable levels down to the bottom. As this coincidedwith the rapid increase in G.semen population, the latter wasprobably responsible for the depletion of SRP. The flux of SRPfrom the sediment to the epilimnion was virtually interrupted,making non-migrating phytoplankton dependent only on regeneratedand inflowing inorganic phosphorus. Besides nutrient availability,DVM also benefited G.semen in the reduction of metabolic andgrazing losses. In this lake, the remarkable multiple advantagesof DVM probably explain the dominance of the large G.semen inthe late summer phytoplankton biomass over much smaller algae.  相似文献   

6.
1. Mesocosm experiments were carried out to examine the relative importance of top down (fish predation) and bottom up (nutrient addition) controls on phytoplankton abundance in a small shallow lake, Little Mere, U.K., in 1998 and 1999. These experiments were part of a series at six sites across Europe. 2. In the 1998 experiment, top‐down processes (through grazing of large Cladocera) were important in determining phytoplankton biomass. The lack of plant refugia for zooplankton was probably important in causing an increasing chlorophyll a concentration even at intermediate fish density. Little Mere normally has abundant macrophytes but they failed to develop substantially during both years. Bottom‐up control was not important in 1998, most probably because of high background nutrient concentrations, as a result of nutrient release from the sediments. 3. In 1999 neither top‐down nor bottom‐up processes were significant in determining phytoplankton biomass. Large cladoceran grazers were absent even in the fish‐free enclosures, probably because dominance of cyanobacteria and high phytoplankton biomass made feeding conditions unsuitable. As in 1998, bottom‐up control of phytoplankton was not important, owing to background nutrient concentrations that were even higher in 1999 than in 1998, perhaps because of the warmer, sunnier weather. 4. The differing outcomes of the two experiments in the same lake with similar experimental designs highlight the importance of starting conditions. These conditions in turn depended on overall weather conditions prior to the experiments.  相似文献   

7.
1. The scale of investigations influences the interpretation of results. Here, we investigate the influence of fish and nutrients on biotic communities in shallow lakes, using studies at two different scales: (i) within‐lake experimental manipulation and (ii) comparative, among‐lake relationships. 2. At both scales, fish predation had an overriding influence on macroinvertebrates; fish reduced macroinvertebrate biomass and altered community composition. Prey selection appeared to be size based. Fish influenced zooplankton abundance and light penetration through the water column also, but there was no indication that fish caused increased resuspension of sediment. 3. There were effects of nutrients at both scales, but these effects differed with the scale of the investigation. Nutrients increased phytoplankton and periphyton at the within‐lake scale, and were associated with increased periphyton at the among‐lake scale. No significant effect of nutrients on macroinvertebrates was observed at the within‐lake scale. However, at the among‐lake scale, nutrients positively influenced the biomass and density of macroinvertebrates, and ameliorated the effect of fish on macroinvertebrates. 4. Increased prey availability at higher nutrient concentrations would be expected to cause changes in the fish community. However, at the among‐lake scale, differences were not apparent in fish biomass among lakes with different nutrient conditions, suggesting that stochastic events influence the fish community in these small and relatively isolated shallow lakes. 5. The intensity of predation by fish significantly influences macroinvertebrate community structure of shallow lakes, but nutrients also play a role. The scale of investigation influences the ability to detect the influence of nutrients on the different components of shallow lake communities, particularly for longer lived organisms such as macroinvertebrates, where the response takes longer to manifest.  相似文献   

8.
Torras  X.  Cardona  L.  Gisbert  E. 《Hydrobiologia》2000,429(1-3):49-57
Flathead grey mullet (Mugil cephalus L.) stocked in fish ponds were long considered to feed primarily on detritus. However, recent research has found that they obtain much of their food from plankton and that they have a detrimental effect on pond zooplankton and large phytoplankton, whilst enhancing small phytoplankton. It has been suggested that flathead grey mullet may also increase the internal phosphorus loading of the ecosystem, which would also increase phytoplankton density. To test whether zooplankton removal or nutrient release from the sediment is the better explanation for phytoplankton enhancement in the presence of flathead grey mullet, the ecosystems of fish-less tanks, tanks with a 60 m mesh filter and tanks stocked at a fish density of 243 g m-3 were compared. In the presence of flathead grey mullets, cladocerans, ostracods and chironomid larvae became scarcer than in the control tanks, while there were more small phytoplankton and mud snails. The green algae Cladophora sp. did not occur at all. The presence of a mechanical filter also reduced cladoceran, ostracod and chironomid densities and increased phtyoplankton and mud snail density. However, the situation observed in filter tanks was intermediate between that observed in the fish tanks and the control tanks, due to the lower filtering efficiency of the mechanical filter. The organic matter content of the sediment decreased throughout the experiment in the control and filter tanks, but remained stable in fish tanks. Phosphorus and nitrogen concentrations were not affected by any treatment. These results showed that flathead grey mullet enhanced phytoplankton development due to the removal of large cladocerans and not as a consequence of nutrient release. Furthermore, the flathead grey mullet strongly modified the benthic community, probably due to direct predation.  相似文献   

9.
Biomanipulation was carried out in order to improve the water quality of the small hypertrophic Lake Zwemlust (1.5 ha; mean depth 1.5 m). In March 1987 the lake was drained to facilitate the elimination of fish. Fish populations were dominated by planktivorous and benthivorous species (total stock c. 1500 kg) and were collected by seine- and electro-fishing. The lake was subsequently re-stocked with 1500 northern pike fingerlings (Esox lucius L.) and a low density of adult rudd (Scardinius erythrophthalmus). The offspring of the rudd served as food for the predator pike. Stacks of Salix twigs, roots of Nuphar lutea and plantlets of Chara globularis were brought in as refuge and spawning grounds for the pike, as well as shelter for the zooplankton.The impact of this biomanipulation on the light penetration, phytoplankton density, macrophytes, zooplankton and fish communities and on nutrient concentrations was monitored from March 1987 onwards. This paper presents the results in the first year after biomanipulation.The abundance of phytoplankton in the first summer (1987) after this biomanipulation was very low, and consequently accompanied by increase of Secchi-disc transparency and drastic decline of chlorophyll a concentration.The submerged vegetation remained scarce, with only 5 % of the bottom covered by macrophytes at the end of the season.Zooplankters became more abundant and there was a shift from rotifers to cladocerans, comprised mainly of Daphnia and Bosmina species, the former including at least 3 species.The offspring of the stocked rudd was present in the lake from the end of August 1987. Only 19% of the stocked pike survived the first year.Bioassays and experiments with zooplankton community grazing showed that the grazing pressure imposed by the zooplankton community was able to keep chlorophyll a concentrations and algal abundance to low levels, even in the presence of very high concentrations of inorganic N and P. The total nutrient level increased after biomanipulation, probably due to increased release from the sediment by bioturbation, the biomass of chironomids being high.At the end of 1987 Lake Zwemlust was still in an unstable stage. A new fish population dominated by piscivores, intended to control the planktivorous and benthivorous fish, and the submerged macrophytes did not yet stabilize.  相似文献   

10.
The seasonal changes in phytoplankton biomass and species diversity in a shallow, eutrophic Danish lake are described and related to different disturbance events acting on the phytoplankton community.Both the spring diatom maximum and the summer bloom of the filamentous blue-green alga, Aphanizomenon flos-aquae (L.) Ralfs, coincided with low values of phytoplankton species diversity and equitability. Diatom collapse was mainly due to internal modifications as nutrient depletion (Si, P) caused by rapid growth of phytoplankton, and increased grazing activity from zooplankton. A large population of Daphnia longispina O.F. Müller in June effectively removed smaller algal competitors, thus favouring the development of a huge summer bloom (140 mm3 l–1) of Aphanizomenon flos-aquae. Heavy rainfall and storms in late July increased the loss of Apahnizomenon by out-flow and disturbed the stratification of the lake. These events caused a marked decline in phytoplankton biomass but had no effect on species diversity. A second storm period in late August circulated the lake completely and was followed by a rapid increase in phytoplankton diversity, and a change in the phytoplankton community structure from dominance of large, slow-growing K-selected species (Aphanizomenon) to small, fast-growing r-selected species (cryptomonads).  相似文献   

11.
Ciliates and heliozoans were studied in a small oligotrophicSwedish lake with the objective of investigating what controlledthe community structure and population dynamics. Enclosure experimentswere performed with five levels of inorganic nutrient concentrationsand the presence or absence of crustacean zooplankton. The experimentswere performed during the summers immediately preceding andfollowing liming of the lake. The responses of protozooplanktonto these manipulations were investigated and compared with theresponses of bacterioplankton, phytoplankton and metazooplankton.In contrast to most studies on protozoan zooplankton, ciliateswere determined to the lowest taxon possible, and biomassesand abundances were calculated for the different taxa. The protozooplanktonbiomass of the lake, expressed as summer average, did not changebetween the years. However, the community composition changedfrom smaller to larger species as the small prostomatid ciliatesUrotricha and Balanion were largely replaced by oligotrichsof the genera Strombidium and Strobilidium. The experimentssuggested that the protozooplankton community in the lake wascontrolled by metazooplankton in the acidic environment, whilefood limitation was the most important controlling factor afterliming. Before liming, Urotricha and Balanion were unaffectedby nutrient additions as well as by metazooplankton, while otherciliates and Heliozoa showed a significantly negative responseto metazooplankton. After liming, Urotricha and Balanion showeda significant positive response to nutrient addition as wellas to bacterioplankton biomass. A possible explanation for thisresponse in these algivore genera is that the response was indirectand mediated through small chrysoflagellates.  相似文献   

12.
To gain better insight into the importance of predator and resourcecontrol in New Zealand lakes we surveyed the late summer trophicstructure of 25 shallow South Island lakes with contrastingnutrient levels (6–603 µg TP l–1) and fishdensities. Total catch of fish per net (CPUE) in multi-meshgillnets placed in the open water and the littoral zones waspositively related with the nutrient level. Trout CPUE was negativelycorrelated with total phosphorus (TP) and total nitrogen (TN).Zooplankton seemed largely influenced by fish, as high fishCPUE coincided with low zooplankton and Daphnia biomass, lowaverage weight of cladocerans, low contribution of Daphnia tototal cladoceran biomass, low ratio of calanoids to total copepodbiomass and low ratio of zooplankton biomass to phytoplanktonbiomass. However, chlorophyll a was only slightly negativelyrelated to Daphnia biomass and not to zooplankton biomass ina multiple regression that included TN and TP. Ciliate abundancewas positively related to chlorophyll a and negatively to Daphniabiomass, but not to total zooplankton biomass, while no relationshipswere found between heterotrophic nanoflagellates and zooplankton.The relationships between fish abundance and nutrients and fishabundance and zooplankton:phytoplankton ratio and between chlorophylla and TP largely followed the pattern obtained for 42 northtemperate Danish lakes. We conclude that fish, including trout,have a major effect on the zooplankton community structure andbiomass in the pelagial of the shallow oligotrophic to slightlyeutrophic New Zealand lakes, but that the cascading effectson phytoplankton and protist are apparently modest.  相似文献   

13.
Enclosures, open to the bottom sediments and to the atmosphere, containing about 17 m3 of lake water in the mesotrophic area of Lake Balaton, were used to elucidate the role of the benthivorous fish bream (Ambramis brama L.) in the lake during 1984–1986.Throughout the whole period water was less transparent in the enclosure containing fish, which strongly influenced the concentrations of suspended solids and chlorophyll a.Both phytoplankton biomass and production readily responded to nutrient increase in the enclosure with fish. In 1985 diatoms were replaced by cyanobacteria whereas in 1986, at a lower fish stocking, a shift in algal structure towards chlorophytes was observed.Egested organic substances and the resuspension of sediment particles by fish increased bacterial production.  相似文献   

14.
Williams  Adrian E.  Moss  Brian 《Hydrobiologia》2003,491(1-3):331-346
Thirty-six enclosures, surface area 4 m2, were placed in Little Mere, a shallow fertile lake in Cheshire, U.K. The effects of different fish species (common carp, common bream, tench and roach) of zooplanktivorous size, and their biomass (0, 200 and 700 kg ha–1) on water chemistry, zooplankton and phytoplankton communities were investigated. Fish biomass had a strong effect on mean zooplankton size and abundance. When fish biomass rose, larger zooplankters were replaced by more numerous smaller zooplankters. Consequently phytoplankton abundance rose in the presence of higher densities of zooplanktivorous fish, as zooplankton grazing was reduced. Fish species were also significant in determining zooplankton community size structure. In enclosures with bream there were significantly greater densities of small zooplankters than in enclosures stocked with either carp, tench and, in part, roach. When carp or roach were present, the phytoplankton had a greater abundance of Cyanophyta than when bream or tench were present. Whilst top-down effects of fish predation controlled the size partitioning of the zooplankton community, this, in turn apparently controlled the bottom-up regeneration of nutrients for the phytoplankton community. At the zooplankton–phytoplankton interface, both top-down and bottom-up processes were entwined in a reciprocal feedback mechanism with the extent and direction of that relationship altered by changes in fish species. This has consequences for the way that top-down and bottom-up processes are generalised.  相似文献   

15.
The strength of the direct effect by scraping cladocerans and the indirect effect of nutrient regeneration by filtering herbivorous cladocerans on periphyton growth was investigated in a littoral food web. Ten enclosures were erected in a lake in an area with artificial vegetation. Five enclosures were stocked with juvenile perch ( Perca fluviatilis ) and five lacked fish. In addition, a reference area in the artificial vegetation was sampled. The mesh size of the net surrounding the cages was chosen to allow an inflow of phytoplankton into the cages from the surrounding water. The periphyton and filtering herbivorous cladoceran biomasses were highest in the fish-free treatment. There was no difference in phytoplankton biomass between treatments despite the large difference in filtering herbivorous cladoceran biomass, suggesting that the inflow of phytoplankton into enclosures completely compensated for the loss due to filtering. The reference area and the enclosure with fish showed the same patterns in developments with respect to filtering herbivorous cladocerans and periphyton. Scraping cladoceran biomass was higher in the fish-free treatment resulting in a positive correlation between scraping cladoceran and periphyton biomass. Our results suggest that the positive indirect effect of filtering herbivorous cladoceran nutrient regeneration on periphyton was stronger than the negative direct effect of grazing by scraping cladocerans on periphyton in this semi-open system, and that pelagic production by phytoplankton may foster periphyton growth in the littoral habitat via filtering herbivorous cladocerans. Furthermore, heterogeneity within trophic levels involving primary producers of different growth forms such as phytoplankton and periphyton may enhance the potential for compensatory responses via nutrient recycling.  相似文献   

16.
The relative strength of "top-down" versus "bottom-up" control of plankton community structure and biomass in two small oligotrophic lakes (with and without fish), located near the Polar circle (Russia), has been investigated for two years, 1996 and 1997. The comparative analyses of zooplankton biomass and species abundance showed strong negative effect of fish, stickeback (Pungitius pungitius L.), on the zooplankton community species, size structure and biomass of particular prey species but no effect on the biomass of the whole trophic level. An intensive predation in Verkhneye lake has lead to: 1) sixfold decline in biomass of large cladoceran Holopedium gibberum comparing to the lake lacking predator, 2) shift in the size mode in zooplankton community and the replacement of the typical large grazers by small species--Bosmina longirostris and rotifers. Their abundance and biomass even increased, demonstrating the stimulating effect of fish on the "inefficient" and unprofitable prey organisms. The analysis of contributions of different factors into the cladoceran's birth rate changes was applied to demonstrate the relative impact of predators and resources on zooplankton abundance. An occasional introduction of the stickleback to Vodoprovodnoye lake (the reference lake in 1996) in summer 1997 lead to drastic canges in this ecosystem: devastating decrease of zooplankton biomass and complete elimination of five previously dominant grazer species. The abundance of edible phytoplankton was slightly higher in the lake with fish in 1996 and considerably higher in the lake where fish has appeared in 1997 showing the prevailing "top-down" control of phytoplankton in oligotrophic ecosystem. The reasons of trophic cascade appearance in oligotrophic lakes are also discussed.  相似文献   

17.
Impacts of mixing and stratification on the fate of primaryproduction were studied in an oligotrophic lake by comparingthe size-distributions of phytoplankton standing stock and productionin two basins, only one of which experiences seasonal thermalstratification. In both basins, the phytoplankton was dominatedby small cells (pico- and nanoplankton). The contribution ofpicoplankton to both biomass and production remained relativelyconstant throughout the season in both basins. Seasonal variationsin the size structure of phytoplankton communities do not agreewith the paradigm of dominance by small cells during summerstratification and dominance of larger cells during spring andfall mixing events. Nutrient control of productivity throughmixing and stratification is unlikely to affect the structureof phytoplankton communities when nutrients (allochthonous)derived from the catchment basin or sediments are in short supply.In such environments, nutrients (autochthonous) are largelyderived in the lake through heterotrophic food web processessuch as grazing, excretion and decomposition. Maximum ratesof production and losses in July and August in both basins areconsistent with increased regeneration and may represent a responseof larger-sized cells to higher nutrient availability resultingfrom enhanced grazing on picoplankton. The high correlationbetween the rates of loss and of potential growth for the phytoplanktoncommunity during all sampling periods, and the relative constancyof the picoplankton biomass, leads us to propose a long-term,steady-state equilibrium in the phytoplankton community underthe control of grazing by herbivores and/or other loss processes.  相似文献   

18.
Spatial and temporal variability of the phytoplankton community in the tropical coastal Imboassica lagoon, an environment naturally isolated from the ocean by a narrow sandbar, was analysed every two weeks for 19 months by sampling three sites. During this study, the lagoon received direct input of marine water three times, resulting in remarkable salinity, nutrient concentrations and phytoplankton biomass variations in both temporal and spatial aspects. The phytoplankton biomass presented relatively low values ranging, on average, from 0.54 mg x L(-1) in the station closest to the sea (station 1) to 1.34 mg x L(-1) in the station close to a macrophyte bank (station 3). Diatoms and cryptomonads dominated in stations 1 and 2 (located relatively close to station 1, yet receiving the runoff of domestic sewage), and euglenoids, cryptomonads and dinoflagellates at station 3. Stations 1 and 2 usually presented the same dominant species but station 2 presented a higher phytoplankton biomass. On the other hand, station 3 showed more similar results concerning phytoplankton biomass with station 2, however the dominant species were usually different. The high fluctuations of salinity and the reduced nutrient availability are pointed out as the main factors structuring the dynamics of the phytoplankton community at the Imboassica lagoon.  相似文献   

19.
Biomass-pigment relationships in potamoplankton   总被引:4,自引:0,他引:4  
During most of the growing season of 1994, pigment content,as determined by HPLC analysis of algal sample extracts, wasfollowed in the River Meuse (Belgium) potamoplankton. The concentrationof some algal pigments (chlorophylls a and b, fucoxanthin, lutein,echinenone and alloxanthin) was related to biomass estimatesof total phytoplankton and of major taxonomic components (diatoms,green algae, cyanobacteria and cryptomonads). Highly significantlinear regressions were obtained for chlorophyll a-total biomass,fucoxanthin-diatoms, lutein-green algae, chlorophyll b-greenalgae. However, no relationship was found for cyanobacteriaor cryptomonads and their specific pigments, which may be attributedto poor accuracy of biomass estimates for these non-dominantalgae. In conclusion, the good relationship found for dominantalgae and their specific pigments confirms the value of pigmentsas quantitative markers of phytoplankton, as detected in othermarine and freshwater environments.  相似文献   

20.
The influence of nutrient levels, fish density and charophytes on the phytoplankton ecology of a shallow Mediterranean lake was studied by means of an in situ mesocosm experiment. Different levels of nutrients and fish were added over the course of an eight‐week experiment, during which charophytes were removed towards the end. After submerged plants were removed, phytoplankton biomass increased significantly in all the mesocosms, with a reduction of algal diversity and species richness and dominance of cyanobacteria. Cyanobacteria recruited from the sediment played an important role in sustaining planktonic populations of the dominant species. Oscillatorial species (Pseudanabaena galeata, Planktolyngbya limnetica) dominated at higher nutrient levels (0.5–1 mg L–1 P and 5–10 mg L–1 N) and chroococcal cyanobacteria (Merismopedia tenuissima) at lower nutrient levels. Density of planktivorous fish had little effect on the algal recruitment from the sediment and phytoplankton biomass and diversity. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号