首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies of replicative DNA polymerases have led to the generalization that abasic sites are strong blocks to DNA replication. Here we show that yeast replicative DNA polymerase ϵ bypasses a model abasic site with comparable efficiency to Pol η and Dpo4, two translesion polymerases. DNA polymerase ϵ also exhibited high bypass efficiency with a natural abasic site on the template. Translesion synthesis primarily resulted in deletions. In cases where only a single nucleotide was inserted, dATP was the preferred nucleotide opposite the natural abasic site. In contrast to translesion polymerases, DNA polymerase ϵ with 3′–5′ proofreading exonuclease activity bypasses only the model abasic site during processive synthesis and cannot reinitiate DNA synthesis. This characteristic may allow other pathways to rescue leading strand synthesis when stalled at an abasic site.  相似文献   

2.
We isolated active mutants in Saccharomyces cerevisiae DNA polymerase alpha that were associated with a defect in error discrimination. Among them, L868F DNA polymerase alpha has a spontaneous error frequency of 3 in 100 nucleotides and 570-fold lower replication fidelity than wild-type (WT) polymerase alpha. In vivo, mutant DNA polymerases confer a mutator phenotype and are synergistic with msh2 or msh6, suggesting that DNA polymerase alpha-dependent replication errors are recognized and repaired by mismatch repair. In vitro, L868F DNA polymerase alpha catalyzes efficient bypass of a cis-syn cyclobutane pyrimidine dimer, extending the 3' T 26000-fold more efficiently than the WT. Phe34 is equivalent to residue Leu868 in translesion DNA polymerase eta, and the F34L mutant of S. cerevisiae DNA polymerase eta has reduced translesion DNA synthesis activity in vitro. These data suggest that high-fidelity DNA synthesis by DNA polymerase alpha is required for genomic stability in yeast. The data also suggest that the phenylalanine and leucine residues in translesion and replicative DNA polymerases, respectively, might have played a role in the functional evolution of these enzyme classes.  相似文献   

3.
The replicative bypass of base damage in DNA (translesion DNA synthesis [TLS]) is a ubiquitous mechanism for relieving arrested DNA replication. The process requires multiple polymerase switching events during which the high-fidelity DNA polymerase in the replication machinery arrested at the primer terminus is replaced by one or more polymerases that are specialized for TLS. When replicative bypass is fully completed, the primer terminus is once again occupied by high-fidelity polymerases in the replicative machinery. This review addresses recent advances in our understanding of DNA polymerase switching during TLS in bacteria such as E. coli and in lower and higher eukaryotes.  相似文献   

4.
Xeroderma pigmentosum variant and error-prone DNA polymerases   总被引:4,自引:0,他引:4  
Kannouche P  Stary A 《Biochimie》2003,85(11):1123-1132
Replicative DNA synthesis is a faithful event which requires undamaged DNA and high fidelity DNA polymerases. If unrepaired damage remains in the template DNA during replication, specialised low fidelity DNA polymerases synthesises DNA past lesions (translesion synthesis, TLS). Current evidence suggests that the polymerase switch from replicative to translesion polymerases might be mediated by post-translational modifications involving ubiquitination processes. One of these TLS polymerases, polymerase eta carries out TLS past UV photoproducts and is deficient in the variant form of xeroderma pigmentosum (XP-V). The dramatic proneness to skin cancer of XP-V individuals highlights the importance of this DNA polymerase in cancer avoidance. The UV hypermutability of XP-V cells suggests that, in the absence of a functional poleta, UV-induced lesions are bypassed by inaccurate DNA polymerase(s) which remain to be identified.  相似文献   

5.
Translesion DNA synthesis is a mechanism of DNA damage tolerance, and mono-ubiquitination of proliferating cell nuclear antigen (PCNA) is considered to play a key role in regulating the switch from replicative to translesion DNA polymerases (pols). In this study, we analyzed effects of a replicative pol δ on PCNA mono-ubiquitination with the ubiquitin-conjugating enzyme and ligase UBE2A/HHR6A/RAD6A-RAD18. The results revealed that PCNA interacting with pol δ is a better target for ubiquitination, and PCNA mono-ubiquitination could be coupled with DNA replication. Consequently, we could reconstitute replication-coupled switching between pol δ and a translesion pol, pol η, on an ultraviolet-light-irradiated template. With this system, we obtained direct evidence that polymerase switching reactions are stimulated by mono-ubiquitination of PCNA, depending on a function of the ubiquitin binding zinc finger domain of pol η. This study provides a framework for detailed analyses of molecular mechanisms of human pol switching and regulation of translesion DNA synthesis.  相似文献   

6.
7.
Clamp protein or clamp, initially identified as the processivity factor of the replicative DNA polymerase, is indispensable for the timely and faithful replication of DNA genome. Clamp encircles duplex DNA and physically interacts with DNA polymerase. Clamps from different organisms share remarkable similarities in both structure and function. Loading of clamp onto DNA requires the activity of clamp loader. Although all clamp loaders act by converting the chemical energy derived from ATP hydrolysis to mechanical force, intriguing differences exist in the mechanistic details of clamp loading. The structure and function of clamp in normal and translesion DNA synthesis has been subjected to extensive investigations. This review summarizes the current understanding of clamps from three kingdoms of life and the mechanism of loading by their cognate clamp loaders. We also discuss the recent findings on the interactions between clamp and DNA, as well as between clamp and DNA polymerase (both the replicative and specialized DNA polymerases). Lastly the role of clamp in modulating polymerase exchange is discussed in the context of translesion DNA synthesis.  相似文献   

8.
Defective DNA replication can result in substantial increases in the level of genome instability. In the yeast Saccharomyces cerevisiae, the pol3-t allele confers a defect in the catalytic subunit of replicative DNA polymerase delta that results in increased rates of mutagenesis, recombination, and chromosome loss, perhaps by increasing the rate of replicative polymerase failure. The translesion polymerases Pol eta, Pol zeta, and Rev1 are part of a suite of factors in yeast that can act at sites of replicative polymerase failure. While mutants defective in the translesion polymerases alone displayed few defects, loss of Rev1 was found to suppress the increased rates of spontaneous mutation, recombination, and chromosome loss observed in pol3-t mutants. These results suggest that Rev1 may be involved in facilitating mutagenic and recombinagenic responses to the failure of Pol delta. Genome stability, therefore, may reflect a dynamic relationship between primary and auxiliary DNA polymerases.  相似文献   

9.
Cell lines with resistance to cisplatin and carboplatin often retain sensitivity to platinum complexes with different carrier ligands (e.g., oxaliplatin and JM216). HeLa cell extracts were shown to excise cisplatin, oxaliplatin, and JM216 adducts with equal efficiency, suggesting that nucleotide excision repair does not contribute to the carrier-ligand specificity of platinum resistance. We have shown previously that the extent of replicative bypass in vivo is influenced by the carrier ligand of the platinum adducts. The specificity of replicative bypass may be determined by the DNA polymerase complexes that catalyze translesion synthesis past Pt-DNA adducts, by the mismatch-repair system that removes newly synthesized DNA opposite Pt-DNA adducts, and/or by DNA damage-recognition proteins that bind to the Pt-DNA adducts and block translesion synthesis. Primer extension on DNA templates containing site-specifically placed cisplatin, oxaliplatin, or JM216 Pt-GG adducts revealed that the eukaryotic DNA polymerases beta, zeta, gamma and HIV-1 RT had a similar specificity for translesion synthesis past Pt-DNA adducts (oxaliplatin > or = cisplatin > JM216). In addition, defects in the mismatch-repair proteins hMSH6 and hMLH1 led to increased replicative bypass of cisplatin adducts, but not of oxaliplatin adducts. Finally, primer extension assays performed in the presence of HMG1, which is known to recognize cisplatin-damaged DNA, revealed that inhibition of translesion synthesis by HMG1 also depended on the carrier ligand of the Pt-DNA adduct (cisplatin > oxaliplatin = JM216). These studies show that DNA polymerases, the mismatch-repair system and damage-recognition proteins can all impart specificity to replicative bypass of Pt-DNA adducts. Replicative bypass, in turn, may influence the carrier-ligand specificity of resistance.  相似文献   

10.
Y-family DNA polymerases are believed to facilitate the replicative bypass of damaged DNA in a process commonly referred to as translesion synthesis. With the exception of DNA polymerase eta (poleta), which is defective in humans with the Xeroderma pigmentosum variant (XP-V) phenotype, little is known about the cellular function(s) of the remaining human Y-family DNA polymerases. We report here that an interaction between human DNA polymerase iota (poliota) and the proliferating cell nuclear antigen (PCNA) stimulates the processivity of poliota in a template-dependent manner in vitro. Mutations in one of the putative PCNA-binding motifs (PIP box) of poliota or the interdomain connector loop of PCNA diminish the binding between poliota and PCNA and concomitantly reduce PCNA-dependent stimulation of poliota activity. Furthermore, although retaining its capacity to interact with poleta in vivo, the poliota-PIP box mutant fails to accumulate in replication foci. Thus, PCNA, acting as both a scaffold and a modulator of the different activities involved in replication, appears to recruit and coordinate replicative and translesion DNA synthesis polymerases to ensure genome integrity.  相似文献   

11.
跨损伤合成的DNA聚合酶——一类新的DNA聚合酶   总被引:1,自引:0,他引:1  
细胞虽然拥有多种修复途径,但有些DNA损伤仍不可避免地会逃避修复而在基因组上保留下来,细胞跨损伤DNA合成的分子机制一直是DNA修复中主要的未解决问题之一.最近通过对一类结构相关性UmuC/DinB蛋白质超家族成员的研究发现它们具有DNA聚合酶功能.这类新发现的DNA聚合酶不同于经典的复制性DNA聚合酶,它们能以易误/突变(error-prone/mutagenic)或无误(error-free)方式进行跨损伤(translesion)DNA合成,并且从细菌到人在进化上功能保守.  相似文献   

12.
Replicative DNA polymerases, such as T4 polymerase, possess both elongation and 3'-5' exonuclease proofreading catalytic activities. They arrest at the base preceding DNA damage on the coding DNA strand and specialized DNA polymerases have evolved to replicate across the lesion by a process known as TLS (translesion DNA synthesis). TLS is considered to take place in two steps that often require different enzymes, insertion of a nucleotide opposite the damaged template base followed by extension from the inserted nucleotide. We and others have observed that inactivation of the 3'-5' exonuclease function of T4 polymerase enables TLS across a single site-specific abasic [AP (apurinic/apyrimidinic)] lesion. In the present study we report a role for auxiliary replicative factors in this reaction. When replication is performed with a large excess of DNA template over DNA polymerase in the absence of auxiliary factors, the exo- polymerase (T4 DNA polymerase deficient in the 3'-5' exonuclease activity) inserts one nucleotide opposite the AP site but does not extend past the lesion. Addition of the clamp processivity factor and the clamp loader complex restores primer extension across an AP lesion on a circular AP-containing DNA substrate by the exo- polymerase, but has no effect on the wild-type enzyme. Hence T4 DNA polymerase exhibits a variety of responses to DNA damage. It can behave as a replicative polymerase or (in the absence of proofreading activity) as a specialized DNA polymerase and carry out TLS. As a specialized polymerase it can function either as an inserter or (with the help of accessory proteins) as an extender. The capacity to separate these distinct functions in a single DNA polymerase provides insight into the biochemical requirements for translesion DNA synthesis.  相似文献   

13.
DNA damage is generated continually inside cells. In order to be able to replicate past damaged bases (translesion synthesis), the cell employs a series of specialised DNA polymerases, which singly or in combination, are able to bypass many different types of damage. The polymerases have similar structural domains to classical polymerases, but they have a more open structure to allow altered bases to fit into their active sites. Although not required for replication of undamaged DNA, some at least of these polymerases are located in replication factories. Emerging evidence suggests that the polymerase switch from replicative to translesion polymerases might be mediated by post-translational modifications.  相似文献   

14.
DNA damage is generated continually inside cells. In order to be able to replicate past damaged bases (translesion synthesis), the cell employs a series of specialised DNA polymerases, which singly or in combination, are able to bypass many different types of damage. The polymerases have similar structural domains to classical polymerases, but they have a more open structure to allow altered bases to fit into their active sites. Although not required for replication of undamaged DNA, some at least of these polymerases are located in replication factories. Emerging evidence suggests that the polymerase switch from replicative to translesion polymerases might be mediated by post-translational modifications.  相似文献   

15.
Most types of DNA damage block replication fork progression during DNA synthesis because replicative DNA polymerases are unable to accommodate altered DNA bases in their active sites. To overcome this block, eukaryotic cells employ specialized translesion synthesis (TLS) polymerases, which can insert nucleotides opposite damaged bases. In particular, TLS by DNA polymerase eta (poleta) is the major pathway for bypassing UV photoproducts. How the cell switches from replicative to TLS polymerase at the site of blocked forks is unknown. We show that, in human cells, PCNA becomes monoubiquitinated following UV irradiation of the cells and that this is dependent on the hRad18 protein. Monoubiquitinated PCNA but not unmodified PCNA specifically interacts with poleta, and we have identified two motifs in poleta that are involved in this interaction. Our findings provide an attractive mechanism by which monoubiquitination of PCNA might mediate the polymerase switch.  相似文献   

16.
Translesion synthesis: Y-family polymerases and the polymerase switch   总被引:1,自引:0,他引:1  
Replicative DNA polymerases are blocked at DNA lesions. Synthesis past DNA damage requires the replacement of the replicative polymerase by one of a group of specialised translesion synthesis (TLS) polymerases, most of which belong to the Y-family. Each of these has different substrate specificities for different types of damage. In eukaryotes mono-ubiquitination of PCNA plays a crucial role in the switch from replicative to TLS polymerases at stalled forks. All the Y-family polymerases have ubiquitin binding sites that increase their binding affinity for ubiquitinated PCNA at the sites of stalled forks.  相似文献   

17.
Here, we have investigated the consequences of the loss of proof-reading exonuclease function on the ability of the replicative T4 DNA polymerase (gp43) to elongate past a single abasic site located on model DNA substrates. Our results show that wild-type T4 DNA polymerase stopped at the base preceding the lesion on two linear substrates having different sequences, whereas the gp43 D219A exonuclease-deficient mutant was capable of efficient bypass when replicating the same substrates. The structure of the DNA template did not influence the behavior of the exonuclease-proficient or deficient T4 DNA polymerases. In fact, when replicating a damaged "minicircle" DNA substrate constructed by circularizing one of the linear DNA, elongation by wild-type enzyme was still completely blocked by the abasic site, while the D219A mutant was capable of bypass. During DNA replication, the T4 DNA polymerase associates with accessory factors whose combined action increases the polymerase-binding capacity and processivity, and could modulate the behavior of the enzyme towards an abasic site. We thus performed experiments measuring the ability of wild-type and exonuclease-deficient T4 DNA polymerases, in conjunction with these replicative accessory proteins, to perform translesion DNA replication on linear or circular damaged DNA substrates. We found no evidence of either stimulation or inhibition of the bypass activities of the wild-type and exonuclease-deficient forms of T4 DNA polymerase following addition of the accessory factors, indicating that the presence or absence of the proof-reading activity is the major determinant in dictating translesion synthesis of an abasic site by T4 DNA polymerase.  相似文献   

18.
Until recently, it had been concluded from genetic evidence that DNA polymerase III (Pol III, the main replicative polymerase in E. coli) was also responsible for mutagenic translesion synthesis on damaged templates, albeit under the influence of inducible proteins UmuD' and UmuC. Now it appears that these proteins themselves have polymerase activity (and are now known as Pol V) and can carry out translesion synthesis in vitro in the absence of Pol III. Here I discuss the apparent contradictions between genetics and biochemistry with regard to the role of Pol III in translesion synthesis. Does Pol V interact with Pol III and constitute an alternative component of the replication factory (replisome)? Where do the other three known polymerases fit in? What devices does the cell have to ensure that the "right" polymerase is used in a given situation? The debate about the role of Pol III in translesion synthesis reveals a deeper divide between models that interpret everything in terms of mass action effects and those that embrace a replisome held together by protein-protein interactions and located as a structural entity within the cell.  相似文献   

19.
DNA replication machineries tend to stall when confronted with damaged DNA template sites, causing the biochemical equivalent of a major 'train wreck'. A newly discovered bacterial DNA polymerase, Escherichia coli Pol V, acting in conjunction with the RecA protein, can exchange places with the stalled replicative Pol III core and catalyse 'error-prone' translesion synthesis. In contrast to Pol V-catalysed 'brute-force, sloppier copying', another SOS-induced DNA polymerase, Pol II, plays a pivotal role in an 'error-free', replication-restart DNA repair pathway and probably involves RecA-mediated homologous recombination.  相似文献   

20.
Plants are continually exposed to external and internal DNA-damaging agents. Although lesions can be removed by different repair processes, damages often remain in the DNA during replication. Synthesis of template damages requires the replacement of replicative enzymes by translesion synthesis polymerases, which are able to perform DNA synthesis opposite specific lesions. These proteins, in contrast to replicative polymerases, operate at low processivity and fidelity. DNA polymerase η and Rev 1 are two proteins found in eukaryotes that are involved in translesion DNA synthesis. In Arabidopsis, DNA polymerase η and Rev 1 are encoded by AtPOLH and AtREV1 genes, respectively. Transgenic plants over-expressing AtPOLH showed increased resistance to ultraviolet light. Only plants with moderate AtREV1 over-expression were obtained, indicating that this enzyme could be toxic at high levels. Transgenic plants that over-expressed or disrupted AtREV1 showed reduced germination percentage, but the former exhibited a higher stem growth rate than the wild type during development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号