首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exposure of the temperature-sensitive leucyl-tRNA synthetase mutant of Chinese hamster ovary cells, tsH1, to the non-permissive temperature of 39.5 degrees C results in a rapid inhibition of polypeptide chain initiation. This inhibition is caused by a reduced ability of the eukaryotic initiation factor eIF-2 to participate in the formation of eIF-2.GTP.Met-tRNAf ternary complexes and thus in the formation of 43S ribosomal pre-initiation complexes. Associated with this decreased eIF-2 activity is an increased phosphorylation of the eIF-2 alpha subunit. It has previously been shown in other systems that phosphorylation of eIF-2 alpha slows the rate of recycling of eIF-2.GDP to eIF-2.GTP catalysed by the guanine nucleotide exchange factor eIF-2B. We show here that phosphorylation of eIF-2 alpha by the reticulocyte haem-controlled repressor also inhibits eIF-2B activity in cell-free extracts derived from tsH1 cells. Thus the observed increased phosphorylation of eIF-2 alpha at the non-permissive temperature in this system is consistent with impaired recycling of eIF-2 in vivo. Using a single-step temperature revertant of tsH1 cells, TR-3 (which has normal leucyl-tRNA synthetase activity at 39.5 degrees C), we demonstrate here that all inhibition of eIF-2 function reverts together with the synthetase mutation. This establishes the close link between synthetase function and eIF-2 activity. In contrast, recharging tRNALeu in vivo in tsH1 cells at 39.5 degrees C by treatment with a low concentration of cycloheximide failed to reverse the inhibition of eIF-2 function. This indicates that tRNA charging per se is not involved in the regulatory mechanism. Our data indicate a novel role for aminoacyl-tRNA synthetases in the regulation of eIF-2 function mediated through phosphorylation of the alpha subunit of this factor. However, in spite of the fact that cell-free extracts from Chinese hamster ovary cells contain protein kinase and phosphatase activities active against either exogenous or endogenous eIF-2 alpha, we have been unable to show any activation of kinase or inactivation of phosphatase following incubation of the cells at 39.5 degrees C.  相似文献   

2.
When cultures of the temperature-sensitive Chinese hamster ovary cell mutant tsH1 are shifted from 34 degrees C (permissive temperature) to 39.5 degrees C (nonpermissive temperature), protein synthesis is inhibited by more than 80%. This is due principally to a block in activity of polypeptide chain initiation factor eIF-2. In this paper we show that there is impairment of the ability of the guanine nucleotide exchange factor (GEF) to displace GDP from eIF-2 X GDP complexes in extracts from cells incubated at the nonpermissive temperature. Addition of GEF or of high concentrations of eIF-2 stimulates protein synthesis to the level observed in control cell extracts, suggesting that GEF is rate-limiting for eIF-2 activity and overall protein synthesis at the nonpermissive temperature. Analysis of eIF-2 by two-dimensional gel electrophoresis and immunoblotting reveals an increase in the proportion of the alpha subunit in the phosphorylated form from 5.5 +/- 2.4% to 17.2 +/- 3.9% on shifting tsH1 cells from 34 to 39.5 degrees C. No such effect is seen in wild-type cells, which do not exhibit temperature-sensitive protein synthetic activity. Since the primary lesion in tsH1 cells is in their leucyl-tRNA synthetase, these results suggest a role for eIF-2 phosphorylation and GEF activity in coupling the rate of polypeptide chain initiation to the activity of the chain elongation machinery.  相似文献   

3.
Eukaryotic initiation factors are found in the postribosomal supernatant as well as bound to the 40S ribosomal subunits. We have analyzed the factor activities from the supernatant by means of zonal centrifugation followed by Sepharose-heparin affinity chromatography. They exist both as free factors, sedimenting in a broad range from 4 to 7S, and complexed with other protein(s) with a sedimentation value of 16–20S. This complexed fraction contains besides eIF-2 another activity which exhibits a profound stimulation on amino acid incorporation in crude lysates and appears to counteract the heme-regulated inhibitor.Abbreviations eIF-2, eIF-3, eIF-4A and eIF-4B are eukaryotic initiation factors, see FEBS Letters 76, 1-10 (1977).  相似文献   

4.
Anticodon sequence mutants of Escherichia coli initiator tRNA initiate protein synthesis with codons other than AUG and amino acids other than methionine. Because the anticodon sequence is, in many cases, important for recognition of tRNAs by aminoacyl-tRNA synthetases, the mutant tRNAs are aminoacylated in vivo with different amino acids. The activity of a mutant tRNA in initiation in vivo depends on (i) the level of expression of the tRNA, (ii) the extent of aminoacylation of the tRNA, (iii) the extent of formylation of the aminoacyl-tRNA to formylaminoacyl-tRNA (fAA-tRNA), and (iv) the affinity of the fAA-tRNA for the initiation factor IF2 and the ribosome. Previously, using E. coli overproducing aminoacyl-tRNA synthetases, methionyl-tRNA formyltransferase, or IF2, we identified the steps limiting the activity in initiation of mutant tRNAs aminoacylated with glutamine and valine. Here, we have identified the steps limiting the activity of mutant tRNAs aminoacylated with isoleucine and phenylalanine. The combined results of experiments involving a variety of initiation codons (AUG, UAG, CAG, GUC, AUC, and UUC) provide support to the hypothesis that the ribosome.fAA-tRNA complex can act as an intermediate in initiation of protein synthesis. Comparison of binding affinities of various fAA-tRNAs (fMet-, fGln-, fVal-, fIle-, and fPhe-tRNAs) to IF2 using surface plasmon resonance supports the idea that IF2 can act as a carrier of fAA-tRNA to the ribosome. Other results suggest that the C1xA72 base pair mismatch, unique to eubacterial and organellar initiator tRNAs, may also be important for the binding of fAA-tRNA to IF2.  相似文献   

5.
The accompanying paper [McNurlan & Clemens (1986) Biochem. J. 237, 871-876] shows that the inhibition of proliferation of Daudi cells by human interferons is associated with impairment of the overall rate of protein synthesis. We have examined whether two of the mechanisms which are believed to control translation in interferon-treated virus-infected cells may be responsible for the inhibition of protein synthesis during the antiproliferative response in these uninfected cells. Although the rate of polypeptide chain initiation is lower in interferon-treated Daudi cells, as indicated by the disaggregation of polysomes, there is no significant inhibition of activity of initiation factor eIF-2 or of [40 S . Met-tRNAf] initiation complex formation in cell extracts. The phosphorylation state of the alpha subunit of eIF-2 remains unaltered. There is no major decrease in mRNA content as a proportion of total RNA up to 4 days of interferon treatment, as judged by poly(A) content, although the amount of total mRNA/10(6) cells eventually declines. The mRNA present in extracts from interferon-treated cells remains translatable when added to an mRNA-dependent reticulocyte lysate system. We conclude that neither the interferon-inducible eIF-2 protein kinase pathway nor the 2',5'-oligo(adenylate)-ribonuclease L pathway are responsible for the inhibition of polypeptide chain initiation. Rather, the data suggest impairment at the level of formation of [80 S ribosome X mRNA] initiation complexes.  相似文献   

6.
We have obtained highly purified preparations of the heme-controlled eukaryotic initiation factor 2 alpha-subunit (eIF-2 alpha) kinase (HCI) from rabbit reticulocyte lysates containing five different polypeptides. One of these is a 87-kDa (p87) phosphopeptide which appears to show an autokinase activity. The controlled digestion with trypsin of HCI preparations leads to the suggestion that phosphorylation of p87 is not needed for kinase activity and, furthermore, that another 89-kDa polypeptide could be the kinase catalytic subunit. In agreement with this, monoclonal antibodies directed against p87 do not interfere with eIF-2 alpha kinase activity. Moreover, the anti-p87 antibodies and those directed against the mammalian 90-kDa heat shock protein recognize the same p87 polypeptide from rabbit reticulocyte lysates. Upon incubation of the HCI preparation with hemin (5-10 microM), the eIF-2 alpha kinase is converted into an inactive form and appears to become associated with related peptides forming high molecular weight complexes which can be reversibly activated by 2-mercaptoethanol. The maintenance of the integrity of the porphyrin ring is absolutely required for kinase inactivation and although the presence of metal ion is not essential, the iron and cobalt metalloporphyrins are more effective than protoporphyrin IX. The formation of the inactive form of HCI by hemin is prevented by either N-ethylmaleimide, monoclonal antibodies directed against p87, or phosphorylation of p87. The data strongly suggest that hemin regulates eIF-2 alpha kinase activity by promoting formation of the inactive dimer HCI.p87 via disulfide bonds and direct binding of hemin. A model of HCI regulation is discussed.  相似文献   

7.
8.
9.
S Cox  N T Redpath  C G Proud 《FEBS letters》1988,239(2):333-338
In rats, 48-h starvation causes a decrease in the rate of protein synthesis in skeletal (e.g. gastrocnemius) muscle, due largely to impairment of peptide-chain initiation. In other cell types inhibition of initiation is associated with decreased activity and recycling of initiation factor eIF-2, and increased phosphorylation of its alpha-subunit. However, 48-h starvation has no effect on the activity or recycling of eIF-2 measured in extracts of gastrocnemius muscle, or on the level of alpha-subunit phosphorylation. The effects of starvation on peptide-chain initiation in skeletal muscle must therefore involve alterations in other components of the translational machinery.  相似文献   

10.
11.
12.
The initiation factor eIF-2 that specifically binds Met-tRNAf and GTP in ternary complex (eIF-2. GTP. Met-tRNAf) has been purified to apparent homogeneity from wheat germ ribosomal salt wash. The purified factor exhibits a sedimentation coefficient of 5 · 5S and an aggregate molecular weight of 122000-daltons for the native protein.A preliminary account of this work was presented at the 66th Annual (1982) Meeting of the Federation of American Societies for Experimental Biology; Fed Proc 41, 1040.  相似文献   

13.
14.
15.
Phosphocellulose chromatography of initiation factor eIF-2 from rat liver separates it from a protein fraction which is highly stimulatory for [eIF-2.GTP.Met-tRNAf] ternary complex formation. Evidence is presented which indicates that this stimulatory fraction contains a specific GDPase activity. eIF-2 dependent formation of 40S ribosomal initiation complexes is also enhanced by the GDPase preparation. The enzyme may play a role in the recycling of eIF-2 by removing inhibitory GDP which is generated during 80S initiation complex formation.  相似文献   

16.
A highly purified preparation of the eucaryotic initiation factor eIF-2 from calf liver which forms a ternary complex with GTP and Met-tRNAfMet also exhibits a potent GDP binding activity. The factor preparation specifically forms a binary complex with GDP, other ribonucleoside diphosphates and GTP are inactive. Evidence is presented indicating that the GTP-dependent Met-tRNAfMet binding and binary complex formation with GDP are mediated by the same protein which has an apparent molecular weight of 67,000 as judged by glycerol density gradient centrifugation.  相似文献   

17.
eIF-2 purified from neuroblastoma cells consists of three subunits, which appear to be of molecular weight identical to those of the subunits of rabbit reticulocyte eIF-2. A protein fraction has been isolated from neuroblastoma cells with characteristics similar to eRF from reticulocytes: stimulation of amino acid incorporation in a hemin-deprived reticulocyte lysate, the removal of GDP from eIF-2-GDP complexes, a 4-5-fold stimulatory effect in a two-step reaction measuring 40 S preinitiation complex formation and a 3-3.5-fold stimulation in the methionyl-puromycin synthesis. In the methionyl-puromycin-synthesizing system phosphorylated eIF-2 is not responsive to the addition of this fraction from neuroblastoma cells. The protein fraction contains eRF which seems to be similar to the eRF isolated from Ehrlich ascites tumor cells and somewhat distinct from the reticulocyte factor. Incubation of neuroblastoma cell lysate in the presence of [gamma-32P]ATP results in the phosphorylation of a protein of Mr 36 000, migrating on SDS-polyacrylamide gels to the position of eIF-2 alpha. This protein is also phosphorylated in vitro by HRI from reticulocytes. These results may reflect a common underlying principle for the quantitative regulation of protein synthesis in eukaryotic cells.  相似文献   

18.
19.
20.
Eukaryotic translational elongation factor eEF1A is known to be responsible for the binding of codon-specific aminoacyl-tRNAs to the ribosome. In this study, we report that in addition to this canonical function, eEF1A is able to promote the renaturation of aminoacyl-tRNA synthetases (ARS) and protect them against denaturation by dilution. The full recovery of the phenylalanyl- (PheRS) and seryl-tRNA synthetase (SerRS) activities was achieved in the presence of 4 microM eEF1A, while bovine serum albumin at similar concentration had no renaturation effect. Remarkably, in vitro renaturation occurs at the molar ratio of eEF1A to ARS equivalent to that found in the cytoplasm of higher eukaryotic cells. The eEF1A.GDP and eEF1A.GTP complexes were shown to be similar in their effect on the phenylalanyl-tRNA synthetase renaturation. Thus, we conclude that the chaperone-like activity of eEF1A might be important for maintaining the enzymes activity in the protein synthesis compartments of mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号