首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Developmental control of Arabidopsis seed oil biosynthesis   总被引:2,自引:0,他引:2  
Wang H  Guo J  Lambert KN  Lin Y 《Planta》2007,226(3):773-783
  相似文献   

2.
ABSC ISIC AC ID-INSITIVE3(AB I3)、LEAFY COTYLEDON2(LEC2)和FUSCA3(FUS3)转录因子在种子发育过程中发挥着重要的调控作用。采用Northern杂交技术,用拟南芥AB I3保守的B3结构域部分序列作为探针分别与花生根、茎、叶、子叶RNA进行了杂交,同时也对花生根、茎、叶、子叶(含胚)组织切片进行了原位杂交,结果均显示只有在花生的子叶和胚中有杂交信号出现,表明花生中可能存在AB I3、FUS3和LEC2的同源基因,且它们只分布在花生的子叶和胚中。  相似文献   

3.
4.
5.
F Parcy  C Valon  A Kohara  S Misra    J Giraudat 《The Plant cell》1997,9(8):1265-1277
Previous studies have shown that recessive mutations at the Arabidopsis ABSCISIC ACID-INSENSITIVE3 (ABI3), FUSCA3 (FUS3), and LEAFY COTYLEDON1 (LEC1) loci lead to various abnormalities during mid-embryogenesis and late embryogenesis. In this study, we investigated whether these loci act in independent regulatory pathways or interact in controlling certain facets of seed development. Several developmental responses were quantified in abi3, fus3, and lec1 single mutants as well as in double mutants combining either the weak abi3-1 or the severe abi3-4 mutations with either fus3 or lec1 mutations. Our data indicate that ABI3 interacts genetically with both FUS3 and LEC1 in controlling each of the elementary processes analyzed, namely, accumulation of chlorophyll and anthocyanins, sensitivity to abscisic acid, and expression of individual members of the 12S storage protein gene family. In addition, both FUS3 and LEC1 regulate positively the abundance of the ABI3 protein in the seed. These results suggest that in contrast to previous models, the ABI3, FUS3, and LEC1 genes act synergistically to control multiple elementary processes during seed development.  相似文献   

6.
7.
In Arabidopsis thaliana, four major regulators (ABSCISIC ACID INSENSITIVE3 [ABI3], FUSCA3 [FUS3], LEAFY COTYLEDON1 [LEC1], and LEC2) control most aspects of seed maturation, such as accumulation of storage compounds, cotyledon identity, acquisition of desiccation tolerance, and dormancy. The molecular basis for complex genetic interactions among these regulators is poorly understood. By analyzing ABI3 and FUS3 expression in various single, double, and triple maturation mutants, we have identified multiple regulatory links among all four genes. We found that one of the major roles of LEC2 was to upregulate FUS3 and ABI3. The lec2 mutation is responsible for a dramatic decrease in ABI3 and FUS3 expression, and most lec2 phenotypes can be rescued by ABI3 or FUS3 constitutive expression. In addition, ABI3 and FUS3 positively regulate themselves and each other, thereby forming feedback loops essential for their sustained and uniform expression in the embryo. Finally, LEC1 also positively regulates ABI3 and FUS3 in the cotyledons. Most of the genetic controls discovered were found to be local and redundant, explaining why they had previously been overlooked. This works establishes a genetic framework for seed maturation, organizing the key regulators of this process into a hierarchical network. In addition, it offers a molecular explanation for the puzzling variable features of lec2 mutant embryos.  相似文献   

8.
9.
10.
11.
12.
LEAFY COTYLEDON 2 (LEC2) is a key regulator of seed maturation in Arabidopsis. To unravel some of its complex pleiotropic functions, analyses were performed with transgenic plants expressing an inducible LEC2:GR protein. The chimeric protein is functional and can complement lec2 mutation. Interestingly, the induction of LEC2 leads to the accumulation of storage oil in leaves. In addition, short-term induction and use of translation inhibitors allowed to demonstrate that LEC2 can directly trigger the accumulation of seed specific mRNAs. Consistent with these results, the expression of three other major seed regulators namely, LEC1, FUS3, and ABI3 were also induced by LEC2 activation.  相似文献   

13.
14.
15.
16.
The AFL genes (ABI3/VP1, FUS3 and LEC2) belong to the plant-specific B3 superfamily, playing important roles in regulating seed development and maturation. It is unclear, however, whether these genes appeared at the same time as the origin of seed plants and if all these genes are necessary and sufficient for seed development for all seed plants. By conducting a genome-wide comparative analysis of the putative AFL genes in various plant species, we found that the ABI3 homologous genes existed in all land plant genomes, but the FUS3 homologous were present only in seed plant genomes and the LEC2-like sequences only in dicot genomes. Phylogenetic analysis indicated that the AFL genes had undergone successive rounds of gene duplication and subsequent diversification during land plant evolution, resulting in the stepwise origin of the ABI3, FUS3 and LEC2 genes. Comparison of gene structure of the AFL genes revealed a trend of decreasing in the number of conserved domains from ABI3 to FUS3 and LEC2.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号