首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ehrlich Ascites Tumor (EAT) chalone has been shown to inhibit nascent DNA synthesis by inhibiting DNA polymerase alpha and beta (Nakai, 1976), but one of the problems in studying eurkaryotic DNA replication has been the relative impermeability of the cell membrane to precursors and macromolecules; hence, to circumvent this restriction without sacrificing the integrity of the replication process, a broken cell system utilizing nuclei in aqueous media was investigated. Isolated nuclei appear to continue the process of DNA replication that was proceeding in vivo before their isolation and under optimal concitions are able to initiate new synthesis (Fraser & Huberman, 1977). The effects of partially purified EAT chalone on nascent DNA could be studied directly in this nuclear system, which excluded effects of the cell membrane, nucleotide pools and other cytosol elements. A concentration-related inhibition of [3H]thymidine triphosphate ([3H]dTTP) incorporation was noted over a chalone range of 50-200 micrograms/ml. It appears that chalone can inhibit DNA polymerase alpha directly within the nucleus without an intermediate step such as a cell membrane receptor.  相似文献   

2.
Ehrlich Ascites Tumor (EAT) chalone has been shown to inhibit nascent DNA synthesis by inhibiting DNA polymerase α and β (Nakai, 1976), but one of the problems in studying eurkaryotic DNA replication has been the relative impermeability of the cell membrane to precursors and macromolecules; hence, to circumvent this restriction without sacrificing the integrity of the replication process, a broken cell system utilizing nuclei in aqueous media was investigated. Isolated nuclei appear to continue the process of DNA replication that was proceeding in vivo before their isolation and under optimal conditions are able to initiate new synthesis (Fraser & Huberman, 1977). The effects of partially purified EAT chalone on nascent DNA could be studied directly in this nuclear system, which excluded effects of the cell membrane, nucleotide pools and other cytosol elements. A concentration-related inhibition of [3H]thymidine triphosphate ([3H]-dTTP) incorporation was noted over a chalone range of 50–200 μg/ml. It appears that chalone can inhibit DNA polymerase α directly within the nucleus without an intermediate step such as a cell membrane receptor.  相似文献   

3.
EAT chalone effects on nascent DNA synthesis and DNA polymerase were examined. Concentration related inhibition of 3H-thymidine (3H-TdR) incorporation into EAT cell DNA was noted over a chalone range of 50-200 mug/ml. RNA synthesis was not affected, but protein synthesis decreased an average of 82% during 3 hr. Nascent DNA pulse-labeled for 2 min was normally incorporated into bulk DNA in the presence of chalone, but crude alpha- and beta-polymerase activities were inhibited. Crude DNA polymerase for C3H mouse kidney and spleen was also partially inhibited by EAT chalone, suggesting non-specific inhibition of DNA polymerase. Preincubation studies of chalone with crude EAT DNA polymerase or 'gapped' DNA primer had no effect on chalone activity. Chalone may control mitotic activity by inhibiting alpha- and beta-polymerase activity, thereby decreasing nascent DNA synthesis. Nascent DNA is incorporated normally into bulk DNA in the presence of chalone, indicating the DNA ligase is not inhibited.  相似文献   

4.
EAT chalone effects on nascent DNA synthesis and DNA polymerase were examined. Concentration related inhibition of 3H-thymidine (3H-TdR) incorporation into EAT cell DNA was noted over a chalone range of 50–200 μg/ml. RNA synthesis was not affected, but protein synthesis decreased an average of 82% during 3 hr. Nascent DNA pulse-labeled for 2 min was normally incorporated into bulk DNA in the presence of chalone, but crude α and β-polymerase activities were inhibited. Crude DNA polymerase from C3H mouse kidney and spleen was also partially inhibited by EAT chalone, suggesting non-specific inhibition of DNA polymerase. Preincubation studies of chalone with crude EAT DNA polymerase or ‘gapped’ DNA primer had no effect on chalone activity. Chalone may control mitotic activity by inhibiting α- and β-polymerase activity, thereby decreasing nascent DNA synthesis. Nascent DNA is incorporated normally into bulk DNA in the presence of chalone, indicating that DNA ligase is not inhibited.  相似文献   

5.
The effect of adrenaline and Ehrlich ascite carcinoma (EAC) chalone on cell division was studied. It has been established that EAC chalone inhibited cell proliferation. The action of adrenaline was also accompanied by a decrease in mitotic index, but the inhibitory effect of the hormone was weaker than that of chalone, it occurred later and its duration was less. A combined effect of adrenaline and chalone depended on the time interval between the administration of the substances. It has been found that chalone administration 1 h after adrenaline administration prolonged mitotic inhibitory effect by 4 h and its synchronous action on cell division in EAC was weak during the experiment. Combined effect of adrenaline and chalone did not differ from the effect of chalone alone if chalone was administered 3 h after adrenaline administration.  相似文献   

6.
DNA polymerase gamma from purified nuclei of EMT-6 cells (mice) seems to be identical to the mitochondrial DNA polymerase from the same source following several criteria. These two enzyme activities are strongly inhibited by ethidium bromide and acriflavin, while proflavin, acridine orange, daunomycin and chloroquine inhibition is less pronounced. In the case of DNA polymerases alpha and beta very little inhibition by ethidium bromide was observed. Intercalation of this dye in a poly dA-dT 12-18 template-primer was studied spectrophotometrically under conditions similar to those in the in vitro DNA polymerase assay. The polymerase assay. The inhibition by this drug of the mitochondrial DNA polymerase gamma activity was shown to be competitive at varying concentrations of TTP while the inhibition was of the non-competitive type at different concentrations of poly dA-dT 12-18. We conclude that the drug, most probably in the intercalated form, is able to interact with the active site (s) of mitochondrial DNA polymerase.  相似文献   

7.
The level of DNA polymerase gamma as compared to DNA polymerases alpha and beta has been determined in chick embryo by means of specific tests: the amount of gamma-polymerase in the 12-day-old chick embryo reaches about 15% of the total polymerase activity. This enzyme is mainly localized in nuclei and mitochondria, where it represents the prevailing if not the unique DNA polymerase activity. The mitochondrial DNA polymerase gamma is likely to be associated with the internal membrane or the matrix of this organelle since it is not removed by digitonin treatment. The gamma-polymerases have been purified from chick embryo nuclei and mitochondria 500-700 times by means of DEAE-cellulose, phosphocellulose and hydroxyapatite chromatographies. The purified mitochondrial DNA polymerase gamma is closely related to the homologous enzyme purified from the nuclei of the same cells. So far, they cannot be distinguished on the basis of their sedimentation, catalytical properties and response to inhibitors or denaturating agents. The purified gamma enzymes are distinct from the chick embryo DNA polymerases alpha and beta and are not inhibited by antibodies prepared against the latter enzymes. The nuclear and mitochondrial gamma-polymerases do not respond to the oncogenic RNA virus DNA polymerase assay with natural mRNAs.  相似文献   

8.
We determined that there is a protein in rat liver capable of inhibiting DNA polymerase alpha. To assay for this inhibitor, DNA polymerase alpha was purified from R3230AC rat mammary tumor, a rich source of this enzyme. Protein fractions from Sephacryl S200 gel filtration of total soluble liver extract showing inhibition of DNA polymerase alpha were further chromatographed on DEAE-cellulose. This step revealed two inhibitor protein populations with the major form corresponding to a molecular weight of 143,000 dalton. Soluble extract from isolated rat liver nuclei also showed the presence of at least two inhibitors; the major form was 200,000+ dalton in molecular weight. Both the 143,000 and 200,000+ dalton inhibitor proteins were capable of inhibiting the R3230AC tumor DNA polymerase alpha in a dose-dependent manner. These inhibitors exhibited similar inhibition of nuclear matrix-associated DNA polymerase alpha from either the R3230AC tumor or from regenerating rat liver.  相似文献   

9.
DNA polymerase III holoenzyme has been purified from Escherichia coli HMS-83, using, as an assay, the conversion of coliphage G4 single-stranded DNA to the duplex replicative form. The holoenzyme consists of at least four different subunits: alpha, beta, gamma, and delta of 140,000, 40,000, 52,000, and 32,000 daltons, respectively. The alpha subunit is DNA polymerase III, the dnaE gene product. The holoenzyme has been resolved by phosphocellulose chromatography into an alpha - gamma - delta complex and a subunit beta (copolymerase III*); neither possesses detectable activity in the G4 system but together reconstitute holoenzyme-like activity. The alpha - gamma - delta complex has been further resolved to yield a gamma - delta complex which reconstitutes alpha - gamma - delta activity when added to DNA polymerase III. The gamma - delta complex contains a product of the dnaZ gene and has been purified from a strain which contains a ColE1-dnaZ hybrid plasmid.  相似文献   

10.
Extracts of whole tissue or isolated nuclei from lactating rat mammary gland that has diminished cell replication capacity were more active than the corresponding extracts of pregnant rat mammary gland that contains actively replicating cells in causing a dose-dependent inhibition of DNA polymerase alpha in vitro. Purification of the inhibitor from both tissue and nuclear extracts using a sequence of Sephacryl S200, DEAE-cellulose and CM52 columns confirmed the above assay results. Using the same assay and purification procedures, both tissue and nuclear extracts from the rapidly growing transplanted R3220AC mammary tumors exhibited very little or no inhibitor activity. The partially purified mammary inhibitor (mol. wt of 155kD, high A280 nm/A260 nm ratio, heat labile) was equally inhibitory to the purified DNA polymerase alpha from either R3230AC tumor or calf thymus, and to the nuclear matrix bound DNA polymerase alpha of R3230AC tumor.  相似文献   

11.
H Fischer  S Erdmann  E Holler 《Biochemistry》1989,28(12):5219-5226
From extracts of microplasmodia of Physarum polycephalum and their culture medium, an unusual substance was isolated which inhibited homologous DNA polymerase alpha of this slime mold but not beta-like DNA polymerase and not heterologous DNA polymerases. Analysis, especially NMR spectroscopy, revealed the major component to be an anionic polyester of L-malic acid and the inhibition to be due to poly(L-malate) in binding reversibly to DNA polymerase alpha. The mode of inhibition is competitive with substrate DNA and follows an inhibition constant Ki = 10 ng/mL. Inhibition is reversed in the presence of spermine, spermidine, poly(ethylene imine), and calf thymus histone H1. According to its ester nature, the inhibitor is slightly labile at neutral and instable at acid and alkaline conditions. Its largest size corresponds to a molecular mass of 40-50 kDa, but the bulk of the material after purification has lower molecular masses. The inhibitory activity depends on the polymer size and has a minimal size requirement.  相似文献   

12.
13.
A novel factor that stimulates DNA polymerase alpha activity on poly(dA) X oligo(dT) has been identified and partially purified from mouse FM3A cells. The assay system for the factor contained poly(ethylene glycol) 6000. The activities of DNA polymerase alpha on poly(dA) X oligo(dT) in the presence and absence of the stimulating factor were increased greatly by the addition of poly(ethylene glycol). Stimulation by the factor was observed at all the primer to template ratios tested from 0.01 to 0.3. The highest activity was observed at the ratio of 0.05, corresponding to about 3.3 primers on one template in the presence of the factor. The concentration of DNA polymerase alpha used in the assay affected the stimulation by the factor, and the stimulation became more prominent at concentrations of the enzyme lower than 0.04 unit per assay. The stimulating factor lowered the Km value of DNA polymerase alpha for the template-primer, though they had no effect on the Km value for dTTP substrate. The results of product analysis suggested that the stimulation by the factor is mainly due to the increase in the initiation frequency of DNA synthesis from the primers. The stimulating factor specifically stimulated DNA polymerase alpha but not DNA polymerases beta and gamma. Furthermore, the factor formed a complex with DNA polymerase alpha under a certain condition.  相似文献   

14.
The specific action of a pig skin fraction enriched in epidermal G1-chalone, a tissue-specific inhibitor of epidermal DNA synthesis, was investigated by means of flow cytofluorometry. The results indicate that G1-chalone inhibits progression of partially synchronized rat tongue epithelial cells (line RTE-2) through the cell cycle at a point 2 h prior to the beginning of the S-phase. Approximately 8 h after chalone addition, the cells can overcome the inhibition and begin to enter the S-phase. The duration of this delay is concentration-independent, but the fraction of cells affected is proportional to the chalone concentration. The progression of cells which already have entered S-phase is not affected. In contrast to the G1-chalone preparation, aphidicolin, a potent inhibitor of DNA polymerase alpha, clearly shows S-phase-specific inhibition. These results indicate that the epidermal G1-chalone inhibits epidermal cell proliferation in a fully reversible manner by a highly specific effect on cell cycle traverse.  相似文献   

15.
Most, although not all, samples of commercial calf thymus DNA were strongly inhibitory to DNA polymerase alpha; the inhibition made the DNA useless as a template for this enzyme. In a pre-assembled DNA polymerase assay mixture (minus enzyme but including activated DNA) the inhibition tended to diminish with time but at a rate that was not predictable, and some inhibition usually persisted. It was concluded that the inhibition was the result of contamination of the DNA by a heparin-like material on the basis of the following: 1) the inhibition could be reversed by treatment of the DNA with heparinase; 2) both the endogenous inhibitory effect of calf thymus DNA as well as the inhibitory effect of heparin on DNA polymerase alpha are reversed by protamine (which is known to prevent the antithrombin activity of heparin); 3) both the endogenous inhibition and inhibition by heparin are also reversed by ampholyte (which also prevents the antithrombin activity of heparin); and 4) both the endogenous and the heparin-induced inhibitory effects display the same spectrum of activity against mammalian DNA polymerases, i.e. both DNA polymerases alpha and delta are extremely sensitive whereas, DNA polymerases beta and gamma are resistant. The last result also suggests the use of heparin as a specific inhibitor of purified mammalian DNA polymerases alpha and delta, similar to the use of aphidicolin.  相似文献   

16.
A non-enzymic protein factor that increases the in vitro rate of synthesis by HeLa DNA polymerase alpha 15- to 30-fold with denatured DNA as template has been partially purified from the cytoplasmic fraction of HeLa cells. The stimulatory effect is highly specific for HeLa DNA polymerase alpha and for DNA templates that contain extensive regions of single-strandedness. Synthesis with denatured DNA as template presumably proceeds from 3'-hydroxyl termini formed at loop-back regions since the synthesized DNA product and template are covalently linked. The stimulatory protein factor chromatographs as a basic protein, has an approximate molecular weight of 30,000 daltons and binds with moderate affinity to denatured DNA cellulose, being eluted by o.4M NaCl. The purified factor lacks detectable DNA polymerase, exo- and endodeoxyribonuclease and RNA polymerase activities. It also does not promote helix-coil transitions with poly[d(A-T)] and Clostridium perfringens DNA.  相似文献   

17.
DNA replitase has been described as a complex of enzymes/proteins that are associated with both DNA precursor biosynthesis and DNA replication in mammalian cells [Reddy, G. P. V., and Pardee, A. B. (1980) Proc. Natl. Acad. Sci. USA 77, 3312-3316]. We demonstrate for the first time a 3'----5' exodeoxyribonuclease activity is associated with the replitase complex. As much as 60% of this exonuclease activity was similar to that associated with DNA polymerase delta based upon its sensitivity to inhibition by GMP and by butyl-phenyl-deoxyguanosine triphosphate (BuPdGTP). Association of 3'----5' exonuclease activity with the DNA polymerase in the replitase complex was also demonstrated by analyzing dTTP turnover to dTMP in an in vitro DNA polymerase assay system. The DNA polymerase activity in replitase complex exhibited a sensitivity to BuPdGTP which both was similar to that of DNA replication in permeable cells and was intermediate between the BuPdGTP inhibition of purified DNA polymerases alpha and delta. These studies suggest that the replitase complex contains 3'----5' exonuclease activity associated with the DNA polymerase activity responsible for nuclear DNA replication in mammalian cells. Further studies are required to determine if these activities are at least partially attributed to DNA polymerase delta.  相似文献   

18.
DNA primase activity has been resolved from a purified DNA primase-polymerase alpha complex of HeLa cells by hydrophobic affinity chromatography on phenylSepharose followed by chromatography on hexylagarose. This procedure provides a good yield (55%) of DNA primase that is free from polymerase alpha. The free DNA primase activity was purified to near homogeneity and its properties characterized. Sodium dodecyl sulfate polyacrylamide gel electrophoretic analysis of the purified free DNA primase showed a major protein staining band of Mr 70,000. The native enzyme in velocity sedimentation has an S20'W of 5. DNA primase synthesizes RNA oligomers with single-stranded M-13 DNA, poly(dT) and poly(dC) templates that are elongated by the DNA polymerase alpha in a manner that has already been described for several purified eukaryotic DNA primase-polymerase alpha complexes. The purified free DNA primase activity is resistant to neutralizing anti-human DNA polymerase alpha antibodies, BuPdGTP and aphidicolin that specifically inhibit the free DNA polymerase alpha and also DNA polymerase alpha complexed with the primase. The free primase activity is more sensitive to monovalent salt concentrations and is more labile than polymerase alpha. Taken together these results indicate that the DNA primase and polymerase alpha activities of the DNA primase-polymerase alpha complex reside on separate polypeptides that associate tightly through hydrophobic interactions.  相似文献   

19.
DNA polymerase alpha was studied in a direct gap-filling assay. Using a defined template, DNA synthesis was primed from the M13 17-mer universal primer and blocked by an oligonucleotide hybridized 56 nucleotides downstream of the primer. DNA polymerase alpha filled this gap to completion. A time course of the reaction showed that in 50% of the substrate molecules, gaps were filled to completion within 10 min. In another 35% of the molecules the final nucleotide was lacking after 10 min. This nucleotide was added at a reduced rate, and was not incorporated into all of the molecules even after 6 h. The reduced rate of incorporation of the final nucleotide is reflected in an increased Km for de novo incorporation of one nucleotide at a single nucleotide gap (0.7 microM), as opposed to the Km for de novo incorporation of one nucleotide into singly primed M13 DNA (0.18 microM). DNA polymerase alpha purified from murine cells infected with the parvovirus minute virus of mice, and HeLa cell DNA polymerase alpha 2, exhibited the same kinetics of gap filling as did DNA polymerase alpha purified from uninfected Ehrlich ascites murine tumor cells. T4 DNA polymerase filled gaps to completion in this assay. Escherichia coli DNA polymerase I Klenow fragment quantitatively displaced the downstream oligonucleotide, and extended nascent DNA chains for an additional 100 nucleotides. Nicks and single-nucleotide gaps produced in gap-filling reactions by murine DNA polymerase alpha and T4 DNA polymerase were sealed by T4 DNA ligase.  相似文献   

20.
F W Perrino  L A Loeb 《Biochemistry》1990,29(22):5226-5231
Purified DNA polymerase alpha, the major replicating enzyme found in mammalian cells, lacks an associated 3'----5' proofreading exonuclease that, in bacteria, contributes significantly to the accuracy of DNA replication. Calf thymus DNA polymerase alpha cannot remove mispaired 3'-termini, nor can it extend them efficiently. We designed a biochemical assay to search in cell extracts for a putative proofreading exonuclease that might function in concert with DNA polymerase alpha in vivo but dissociates from it during purification. Using this assay, we purified a 3'----5' exonuclease from calf thymus that preferentially hydrolyzes mispaired 3'-termini, permitting subsequent extension of the correctly paired 3'-terminus by DNA polymerase alpha. This exonuclease copurifies with a DNA polymerase activity that is biochemically distinct from DNA polymerase alpha and exhibits characteristics described for a second replicative DNA polymerase, DNA polymerase delta. In related studies, we showed that the 3'----5' exonuclease of authentic DNA polymerase delta, like the purified exonuclease, removes terminal mispairs, allowing extension by DNA polymerase alpha. These data suggest that a single proofreading exonuclease could be shared by DNA polymerases alpha and delta, functioning at the site of DNA replication in mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号