首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A dwarf mutant, dw arf 2 (dw2), was isolated from sunflower (Helianthus annuus). The most obvious alterations of dw2 plants were the lack of stem growth, reduced size of leaves, petioles and flower organs, retarded flower development. Pollen and ovules were produced but the filaments failed to extrude the anthers from the corolla. The dw2 phenotype was mainly because of reduced cell size. In dw2 leaves, the dark-green color was not so much due to higher pigment content, but was correlated with a changed leaf morphology. The mutant responded to the application of bioactive gibberellins (GAs). The levels of ent-7α-hydroxykaurenoic acid, GA(19), GA(20) and GA(1) in dw2?seedlings were severely decreased relative to those in its wild type (WT). ent-Kaurenoic acid was actively converted to ent-7α-hydroxykaurenoic acid in WT plants but quite poorly in dw2 plants. All together these data suggested that the dw2 mutation severely reduced the flux through the biosynthetic pathway leading to active GAs by hampering the conversion of ent-kaurenoic acid to GA(12). Two ent-kaurenoic acid oxidase (KAO) genes were identified. HaKAO1 was expressed everywhere in sunflower organs, while HaKAO2 was mainly expressed in roots. We demonstrated that a DNA deletion in HaKAO1 of dw2 generated aberrant mRNA-splicing, causing a premature stop codon in the amino acid sequence. In dw2 calli, Agrobacterium-mediated transfer of WT HaKAO1 cDNA restored the WT endogenous levels of GAs. In segregating BC(1) progeny, the deletion co-segregated with the dwarf phenotype. The deletion was generated near to a breakpoint of a more complex chromosome rearrangement.  相似文献   

2.
The pea gene LH encodes ent-kaurene oxidase   总被引:4,自引:0,他引:4       下载免费PDF全文
The pea (Pisum sativum) homolog, PsKO1, of the Arabidopsis GA3 gene was isolated. It codes for a cytochrome P450 from the CYP701A subfamily and has ent-kaurene oxidase (KO) activity, catalyzing the three step oxidation of ent-kaurene to ent-kaurenoic acid in the gibberellin (GA) biosynthetic pathway when expressed in yeast (Saccharomyces cerevisiae). PsKO1 is encoded by the LH gene because in three independent mutant alleles, lh-1, lh-2, and lh-3, PsKO1 has altered sequence, and the lh-1 allele, when expressed in yeast, failed to metabolize ent-kaurene. The lh mutants of pea are GA deficient and have reduced internode elongation and root growth. One mutant (lh-2) also causes a large increase in seed abortion. PsKO1 (LH) is expressed in all tissues examined, including stems, roots, and seeds, and appears to be a single-copy gene. Differences in sensitivity to the GA synthesis inhibitor, paclobutrazol, between the mutants appear to result from the distinct nature of the genetic lesions. These differences may also explain the tissue-specific differences between the mutants.  相似文献   

3.
Ent‐kaurenoic acid oxidase (KAO), a class of cytochrome P450 monooxygenases of the subfamily CYP88A, catalyzes the conversion of ent‐kaurenoic acid (KA) to gibberellin (GA) GA12, the precursor of all GAs, thereby playing an important role in determining GA concentration in plants. Past work has demonstrated the importance of KAO activity for growth in various plant species. In Arabidopsis, this enzyme is encoded by two genes designated KAO1 and KAO2. In this study, we used various approaches to determine the physiological roles of KAO1 and KAO2 throughout plant development. Analysis of gene expression pattern reveals that both genes are mainly expressed in germinating seeds and young developing organs, thus suggesting functional redundancy. Consistent with this, kao1 and kao2 single mutants are indistinguishable from wild‐type plants. By contrast, the kao1 kao2 double mutant exhibits typical non‐germinating GA‐dwarf phenotypes, similar to those observed in the severely GA‐deficient ga1‐3 mutant. Phenotypic characterization and quantitative analysis of endogenous GA contents of single and double kao mutants further confirm an overlapping role of KAO1 and KAO2 throughout Arabidopsis development.  相似文献   

4.
At least five genes of the gibberellin (GA) biosynthesis pathway are clustered on chromosome 4 of Gibberella fujikuroi; these genes encode the bifunctional ent-copalyl diphosphate synthase/ent-kaurene synthase, a GA-specific geranylgeranyl diphosphate synthase, and three cytochrome P450 monooxygenases. We now describe a fourth cytochrome P450 monooxygenase gene (P450-4). Gas chromatography-mass spectrometry analysis of extracts of mycelia and culture fluid of a P450-4 knockout mutant identified ent-kaurene as the only intermediate of the GA pathway. Incubations with radiolabeled precursors showed that the metabolism of ent-kaurene, ent-kaurenol, and ent-kaurenal was blocked in the transformants, whereas ent-kaurenoic acid was metabolized efficiently to GA(4). The GA-deficient mutant strain SG139, which lacks the 30-kb GA biosynthesis gene cluster, converted ent-kaurene to ent-kaurenoic acid after transformation with P450-4. The B1-41a mutant, described as blocked between ent-kaurenal and ent-kaurenoic acid, was fully complemented by P450-4. There is a single nucleotide difference between the sequence of the B1-41a and wild-type P450-4 alleles at the 3' consensus sequence of intron 2 in the mutant, resulting in reduced levels of active protein due to a splicing defect in the mutant. These data suggest that P450-4 encodes a multifunctional ent-kaurene oxidase catalyzing all three oxidation steps between ent-kaurene and ent-kaurenoic acid.  相似文献   

5.
Dwarf mutants of pea (Pisum sativum), with impaired gibberellin (GA) biosynthesis in the shoot, were studied to determine whether the roots of these genotypes had altered elongation and GA levels. Mutations na, lh-2, and ls-1 reduced GA levels in root tips and taproot elongation, although in lh-2 and ls-1 roots the reduction in elongation was small (less than 15%). The na mutation reduced taproot length by about 50%. The roots of na plants elongated in response to applied GA(1) and recombining na with mutation sln (which blocks GA catabolism) increased GA(1) levels in root tips and completely restored normal root development. In shoots, Mendel's le-1 mutation impairs the 3beta-hydroxylation of GA(20) to the bioactive GA(1), resulting in dwarfism. However, GA(1) and GA(20) levels were normal in le-1 roots, as was root development. The null mutation le-2 also did not reduce root GA levels or elongation. The results support the theory that GAs are important for normal root elongation in pea, and indicate that a 3beta-hydroxylase gene other than LE operates in pea roots.  相似文献   

6.
The steps involved in kaurenolide and fujenoic acids biosynthesis, from ent-kauradienoic acid and ent-6alpha,7alpha-dihydroxykaurenoic acid, respectively, are demonstrated in the gibberellin (GA)-deficient Gibberella fujikuroi mutant SG139, which lacks the entire GA-biosynthesis gene cluster, complemented with the P450-1 gene of GA biosynthesis (SG139-P450-1). ent-[2H]Kauradienoic acid was efficiently converted into 7beta-hydroxy[2H]kaurenolide and 7beta,18-dihydroxy[2H]kaurenolide by the cultures while 7beta-hydroxy[2H]kaurenolide was transformed into 7beta,18-dihydroxy[2H]kaurenolide. The limiting step was found to be hydroxylation at C-18. In addition, SG139-P450-1 transformed ent-6alpha,7alpha-dihydroxy[14C4]kaurenoic acid into [14C4]fujenoic acid and [14C4]fujenoic triacid. Fujenal was also converted into the same products but was demonstrated not to be an intermediate in this sequence. All the above reactions were absent in the mutant SG139 and were suppressed in the wild-type strain ACC917 by disruption of the P450-1 gene. Kaurenolide and fujenoic acids synthesis were associated with the microsomal fraction and showed an absolute requirement for NADPH or NADH, all properties of cytochrome P450 monooxygenases. Only 7beta-hydroxy[14C4]kaurenolide synthesis and not further 18-hydroxylation was detected in the microsomal fraction. The substrates for the P450-1 monooxygenase, ent-kaurenoic acid and [2H]GA12, efficiently inhibited kaurenolide synthesis with I50 values of 3 and 6 microM, respectively. Both substrates also inhibited ent-6alpha,7alpha-dihydroxy[14C4]kaurenoic acid metabolism by SG139-P450-1. Conversely, [14C4]GA14 synthesis from [14C4]GA12-aldehyde was inhibited by ent-[2H]kauradienoic acid and fujenal with I50 values of 10 and 30 microM, respectively. These results demonstrate that kaurenolides and seco-ring B kaurenoids are formed by the P450-1 monooxygenase (GA14 synthase) of G. fujikuroi and are thus side products that probably result from stabilization of radical intermediates involved in GA14 synthesis.  相似文献   

7.
To enhance our understanding of GA metabolism in rice (Oryza sativa), we intensively screened and identified 29 candidate genes encoding the following GA metabolic enzymes using all available rice DNA databases: ent-copalyl diphosphate synthase (CPS), ent-kaurene synthase (KS), ent-kaurene oxidase (KO), ent-kaurenoic acid oxidase (KAO), GA 20-oxidase (GA20ox), GA 3-oxidase (GA3ox), and GA 2-oxidase (GA2ox). In contrast to the Arabidopsis genome, multiple CPS-like, KS-like, and KO-like genes were identified in the rice genome, most of which are contiguously arranged. We also identified 18 GA-deficient rice mutants at six different loci from rice mutant collections. Based on the mutant and expression analyses, we demonstrated that the enzymes catalyzing the early steps in the GA biosynthetic pathway (i.e. CPS, KS, KO, and KAO) are mainly encoded by single genes, while those for later steps (i.e. GA20ox, GA3ox, and GA2ox) are encoded by gene families. The remaining CPS-like, KS-like, and KO-like genes were likely to be involved in the biosynthesis of diterpene phytoalexins rather than GAs because the expression of two CPS-like and three KS-like genes (OsCPS2, OsCPS4, OsKS4, OsKS7, and OsKS8) were increased by UV irradiation, and four of these genes (OsCPS2, OsCPS4, OsKS4, and OsKS7) were also induced by an elicitor treatment.  相似文献   

8.
The lh-2 mutation in garden pea ( Pisum sativum L.) blocks an early step in the gibberellin (GA) biosynthesis pathway, the three-step oxidation of ent -kaurene to ent -kaurenoic acid. As a result, only low levels of GAs, including the bioactive GA1, are found in shoots and seeds of lh-2 plants. Mutant plants are dwarf in stature, and show increased seed abortion and decreased seed weight, compared with seeds of the tall wild-type (WT) progenitor (cv. Torsdag). The aberrant seed development of lh-2 plants is associated with reduced levels of GA1 and GA3, and with an accumulation of abscisic acid (ABA) in young seeds (pre-contact point). This ABA accumulation is typically 3- to 4-fold, and can be up to 6-fold, compared with control plants. To investigate whether the accumulation of ABA is partly responsible for causing the observed seed abortion in lh-2 plants, we constructed a double mutant between the lh-2 allele and wil . The wil mutation blocks ABA biosynthesis, and reduces ABA levels in young seeds by 10-fold. Introduction of the wil mutation reduces the endogenous ABA levels in young lh-2 seeds, but fails to rescue the seeds from abortion. This indicates that the effects of lh-2 on seed development are not mediated through increased ABA levels, and is consistent with previous evidence that GAs are the controlling factor underlying the lh-2 seed phenotype in pea.  相似文献   

9.
Growth of the primary root of 12 genotypes of peas ( Pisum sativum ) differing in their stem height was recorded for 14 days. The growth rate of roots of wild-type tall, gibberellin (GA)-deficient le dwarf or slender mutants (with la crys ) was similar (3 cm day−1); that of severely GA-deficient nana ( na-1 ) plants was 50% of wild-type but elongation ceased after 8 days; moderately severe dwarf GA-deficient lines ls-1 and lh-1 had a 15% reduction in elongation rate but displayed no time-dependent slowing of the growth rate and brassinosteroid-insensitive and -deficient dwarfs lka and lkb showed slightly decreased root elongation. GA (levels reported in Yaxley et al. 2001 ) is not substantially limiting to root growth until it is severely deficient. The terminal 3 cm of roots of tall plants contained about 25 or 35 ng g−1 fresh weight indole-3-acetic acid (IAA), depending on the genetic background, and le-1 dwarfs were similar. Nana ( na-1 ) had less than 50% the level of IAA of tall, all the moderately severe dwarfs had reductions of about 30% and the slender plants had about 40% more IAA than the corresponding wild-type. With the exception of slender plants, IAA level in the root tips correlated with root elongation. Root growth seems to be promoted by IAA within the range of the internal concentrations detected. Nana plants had a reduced amount of IAA and a lower root-growth rate. Whereas external application of IAA always inhibits root growth, even at very low concentrations, root growth is not similarly inhibited by internal IAA as slender plants had the highest IAA level and growth rate similar to wild-type, regardless of the shoot GA content.  相似文献   

10.
? Gibberellin (GA) deficiency resulting from the na mutation in pea (Pisum sativum) causes a reduction in nodulation. Nodules that do form are aberrant, having poorly developed meristems and a lack of enlarged cells. Studies using additional GA-biosynthesis double mutants indicate that this results from severe GA deficiency of the roots rather than simply dwarf shoot stature. ? Double mutants isolated from crosses between na and three supernodulating pea mutants exhibit a supernodulation phenotype, but the nodule structures are aberrant. This suggests that severely reduced GA concentrations are not entirely inhibitory to nodule initiation, but that higher GA concentrations are required for proper nodule development. ? na mutants evolve more than double the amount of ethylene produced by wild-type plants, indicating that low GA concentrations can promote ethylene production. The excess ethylene may contribute to the reduced nodulation of na plants, as application of an ethylene biosynthesis inhibitor increased na nodule numbers. However, these nodules were still aberrant in structure. ? Constitutive GA signalling mutants also form significantly fewer nodules than wild-type plants. This suggests that there is an optimum degree of GA signalling required for nodule formation and that the GA signal, and not the concentration of bioactive GA per se, is important for nodulation.  相似文献   

11.
12.
XP Guo  XL Li  XW Duan  YY Shen  Y Xing  QQ Cao  L Qin 《PloS one》2012,7(8):e43181
A novel Chinese chestnut (Castanea mollissima Bl.) mutant with extreme short catkins, here was named sck1 and has been characterized in the present study. This sck1 caused 6-fold shorter than wild-type catkins. Endogenous gibberellic acids markedly decreased in the mutant, and application of exogenous GA(3) could partially restore the sck1 phenotype to the wild-type phenotype. Paclobutrazol (PP(333)), an antagonist of GAs biosynthesis, could significantly inhibit the wild-type catkins growth, and lead to a short catkins phenotype similar to the sck1. In addition, compared to the wild-type catkins, the mRNA expression level of ent-kaurenoic acid oxidase (KAO), a gibberellin biosynthsis key gene, was significantly down-regulated (P<0.01) in the sck1. Importantly, transient over-expression of a normal CmKAO gene in short catkins also could partially restore the wild-type phenotype. Real-time PCR and semi-quantitative analysis showed that the mRNA expression level of KAO was significantly up-regulated. In addition, transient RNA interference of CmKAO in wild-type catkins led the mRNA expression level of KAO decrease significantly and inhibited the wild-type catkins elongation strongly. Taken together, our results suggest that the lower gibberellic acids content that is due to decreased CmKAO expression level may contribute to the generation of the extreme short male catkins, sck1.  相似文献   

13.
A key step in gibberellin biosynthesis is the conversion of ent-kaurenoic acid to ent-7[alpha]-hydroxykaurenoic acid, mediated by the enzyme kaurenoic acid hydroxylase. A cell-free system obtained from Gibberella fujikuroi (Saw.) Wr. was used to characterize kaurenoic acid hydroxylase activity. Microsomal preparations from disrupted fungal cells, in the presence of O2 and NADPH, converted [17-14C]ent-kaurenoic acid to oxidation products that were separated by high-performance liquid chromatography and identified as ent-7[alpha]-hydroxykaurenoic acid and gibberellin A14 by combined gas chromatography-mass spectrometry. Flavin adenine dinucleotide and the chloride salts of several monovalent cations stimulated the conversion of ent-kaurenoic acid to these products, whereas CO and a number of known inhibitors of cytochrome P-450-dependent reactions, including paclobutrazol, tetcyclacis, BAS 111.W, flurprimidol, triarimol, metyrapone, and 1-phenylimida-zole, significantly reduced kaurenoic acid hydroxylase activity. Kaurenoic acid hydroxylase was solubilized from fungal microsomes by treatment with 1 M KCl. The properties of the enzyme noted above suggest that kaurenoic acid hydroxylase from G. fujikuroi is a cytochrome P-450-dependent monooxygenase.  相似文献   

14.
15.
16.
Multiple lines of evidence suggest that the genes involved in gibberellin (GA) biosynthesis are regulated by bioactive GA levels. With the recent cloning of GA 2-oxidase genes from pea, we investigated whether this homeostatic regulation extends to the genes controlling GA deactivation in this species, utilizing two well-characterized GA-deficient mutants, ls and na and a GA-accumulating mutant, sln. The pea GA 2-oxidases showed feed-forward effects at the mRNA level, while the endogenous levels of GA20, GA29, GA1, and GA8 showed no evidence of feed-forward regulation. Analyses of genomic Southern blots and expressed sequenced tag (EST) databases suggest that other GA 2-oxidases could possibly account for this lack of feed-forward on GA levels.  相似文献   

17.
In the garden pea ( Pisum sativum L.), shoots of the extremely short plants with the mutant na (phenotype nana) are found by bioassay to contain undetectable levels of gibberellin-like substances. This is confirmed by the use of near isogenic lines differing at the Na locus. Thus, mutant na appears to block a step early in the pathway of gibberellin synthesis. It is suggested that the polar gibberellin-like substance found in the apical portion of shoots of tall ( Le ) but not dwarf ( le ) peas could be GA1. Extracts of shoots of na Le peas treated with GA20 (the major active gibberellin in dwarf peas) possess a large amount of GA1-like activity whereas extracts of shoots of na le peas treated with GA20 possess a much reduced amount. Thus, gene Le may allow the conversion of a less active gibberellin (GA20) into one more active in stimulating elongation in the pea (the GA1-like compound). In contrast to their influence in the shoot, the na and Le genes do not appear to be operative in controlling the gibberellin content of developing seed, indicating that organ specific gibberellin biosynthesis and metabolism occur in peas.  相似文献   

18.
Gibberellins are required for embryo growth and seed development in pea   总被引:11,自引:0,他引:11  
The gibberellin (GA) biosynthesis mutants lh-1 and lh-2 have been used to examine the physiological role of GAs in pea seed development. The LH protein is required for the three-step oxidation of ent -kaurene to ent -kaurenoic acid early in the GA biosynthesis pathway. The allele-specific interaction of lh-1 and lh-2 with chemical inhibitors of these three steps suggests that LH encodes the multi-functional GA biosynthesis enzyme ent -kaurene oxidase. Unlike the lh-2 mutation which reduces seed weight and decreases seed survival by ∼50% compared with wild-type plants, the lh-1 allele has a transient effect on embryo and seed growth and only slightly increases seed abortion. These seed phenotypes parallel the effects of the two mutant alleles on GA levels in young seeds. Detailed examination of the growth of lh-1 seeds reveals homeostatic regulation of GA-promoted embryo and seed growth. Although GA-deficient seeds grow more slowly than WT seeds, decreased assimilate availability to the developing seeds is not the primary reason for the altered seed development. Instead, GAs act to promote some process(es) required for embryo and seed growth and only indirectly influence the distribution of assimilates. How GA deficiency causes seed abortion is not known but it may simply be a consequence of reduced seed or embryo growth rate. These results demonstrate that even relatively small changes in the levels of GAs in young seeds can alter seed development and suggest that the available GA-related mutants may represent only a subset of all possible mutants with reduced GA levels or GA signalling.  相似文献   

19.
M Mathur  R C Sachar 《FEBS letters》1991,287(1-2):113-117
A significant stimulation (2- to 2.5-fold) of AdoMet synthetase was witnessed in glibberellicd acid (GA3, 1 microM)-treated epicotyls of the dwarf pea (Pisum sativum). This was accompanied by a 2.4-fold increase in the endogenous pool of S-adenosylmethionine. Both abscisic acid (10 microM) and cycloheximide (20 micrograms/ml) inhibited the GA3-mediated enhancement of AdoMet synthetase activity. Three isozymes of AdoMet synthetase were detected in GA3-treated epicotyls, whereas a single activity peak was observed in controls. Thus, GA3 seems to control the induction of two new isozymes of AdoMet synthetase in the dwarf pea. By contrast, the tall pea exhibited three isozymes of AdoMet synthetase even in the absence of GA3 treatment. High concentration of L-methionine (2 mM) mimicked the GA3-elicited induction of two new isozymes of AdoMet synthetase in dwarf pea epicotyls.  相似文献   

20.
Evidence was obtained by gas chromatography-mass spectrometry and gas chromatography-selected ion monitoring for the presence of gibberellin A20), GA1, GA29, GA8 and 2-epiGA29 in vegetative shoots of tall sweet pea, Lathyrus odoratus L. Both tall (genotype L –) and dwarf (genotype II ) sweet peas elongated markedly in response to exogenous GA1 attaining similar internode lengths at the highest dose levels. Likewise internode length in both genotypes was reduced by application of the GA biosynthesis inhibitor, PP333. The ratio of leaflet length to width was reduced by application of PP333 to tall plants and this effect was reversed by GA1. When applied to plants previously treated with PP333, GA20 promoted internode elongation of L – plants as effectively as GA1, but GA29 was not as effective as GA1 when applied to II plants. In contrast, GA20 and GA1 were equally effective when applied to the semidwarf lb mutant but GA-treated lblb plants did not attain the same internode length as comparable GA-treated Lb – plants. The difference in stature between the tall and dwarf types persisted in dark-grown plants. It is concluded that GA1 may be important for internode elongation and leaf growth in sweet pea. Mutant l may influence GA1 synthesis by reducing 3β-hydroxylation of GA20 whereas mutant lb appears to affect GA sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号