首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A synthetic LDL (sLDL) has been prepared by combining a lipid microemulsion with amphipathic peptides containing the apoprotein B receptor domain. The biological properties of sLDL have been investigated using the U937 in vitro cell proliferation assay. sLDL exhibits a concentration dependent and saturable stimulation of U937 proliferation. By utilizing different amphipathic peptides, variable proliferation is achieved, indicating a specific interaction between sLDL and the U937 LDL receptor are possible. U937 proliferation is reduced by the addition of an anti-LDL receptor antibody, indicating that sLDL is assimilated via the LDL receptor pathway.The behavior of sLDL mimics that of native LDL, and this approach represents a viable technique for the production of an sLDL particle on a large scale for research and general application.  相似文献   

2.
The human monocyte/macrophage-like cell line U937 is a cholesterol auxotroph. Incubation of these cells in the growth medium in which delipidated fetal calf serum has been substituted for fetal calf serum depletes cellular cholesterol and inhibits growth. The cholesterol requirement of these cells for growth can be satisfied by human low-density lipoprotein (LDL), and very-low-density lipoprotein (VLDL), but not by high-density lipoprotein (HDL). U937 cells can bind and degrade LDL via a high-affinity site and this recognition is altered by acetylation of LDL. This indicates that these cells express relatively high LDL receptor activity and low levels of the acetyl-LDL receptor. The cells were used to study the role of cholesterol in lectin-mediated and fluid-phase endocytosis. Growth of the cells in the medium containing delipidated fetal calf serum results in impairment of both concanavalin A-mediated endocytosis of horseradish peroxidase and concanavalin A-independent endocytosis of Lucifer Yellow. Supplementation of the medium with cholesterol prevents cellular cholesterol depletion, supports growth and stimulates Lucifer Yellow endocytosis but fails to restore horseradish peroxidase endocytosis. However, if the cells are incubated in the presence of no less than 40 μg LDL protein/ml to maintain normal cell cholesterol levels, concanavalin A-mediated endocytosis of horseradish peroxidase is activated. The effect of LDL is specific since neither VLDL nor HDL3 at the same protein concentration activates horseradish peroxidase uptake by the cells. Furthermore, the activation of endocytosis by LDL is not inhibited by the inclusion of heparin or acetylation of the LDL indicating that binding of LDL to the LDL receptor is not required for these effects. The mediation of activation of horseradish peroxidase endocytosis by the lectin is presumed to involve binding of LDL to concanavalin A associated with the cell surface which in turn stimulates horseradish peroxidase binding and uptake by adsorptive endocytosis. The rate of fluid endocytosis and endosome formation seems to depend on cellular cholesterol content presumably because cholesterol is involved in maintaining the appropriate plasma membrane structure and fluidity.  相似文献   

3.
Incubation of low density lipoprotein(s) (LDL) with either lipoprotein lipase or hepatic lipase led to modification of the core lipid composition of LDL. Both lipases modified LDL by substantially reducing core triglyceride content without producing marked differences in size, charge, or lipid peroxide content in comparison to native LDL. The triglyceride-depleted forms of LDL that result from treatment with these two enzymes were degraded at approximately twice the rate of native LDL by human monocyte-derived macrophages (HMDM). Lipase-modified LDL degradation was inhibited by chloroquine, suggesting lysosomal involvement in LDL cellular processing. The increased degradation by macrophages of the LDL modified by these lipases was accompanied by enhanced cholesterol esterification rates, as well as by an increase in cellular free and esterified cholesterol content. In a patient with hepatic triglyceride lipase deficiency, degradation of the triglyceride-rich LDL by HMDM was approximately half that of normal LDL. Following in vitro incubation of LDL from this patient with either lipoprotein or hepatic lipase, lipoprotein degradation increased to normal. Several lines of evidence indicate that LDL modified by both lipases were taken up by the LDL receptor and not by the scavenger receptor. 1) The degradation of lipase-modified LDL in nonphagocytic cells (human skin fibroblast and arterial smooth muscle cells) as well as in phagocytic cells (HMDM, J-774, HL-60, and U-937 cell lines) could be dissociated from that of acetylated LDL and was always higher than that of native LDL. A similar pattern was found for cellular cholesterol esterification and cholesterol mass. 2) LDL receptor-negative fibroblasts did not degrade lipase-modified LDL. 3) A monoclonal antibody to the LDL receptor inhibited macrophage degradation of the lipase-modified LDL. 4) Excess amounts of unlabeled LDL competed substantially with 125I-labeled lipase-modified LDL for degradation by both macrophages and fibroblasts. Thus, lipase-modified LDL can cause significant cholesterol accumulation in macrophages even though it is taken up by LDL and not by the scavenger receptor. This effect could possibly be related to the reduced triglyceride content in the core of LDL, which may alter presentation of the LDL receptor-binding domain of apolipoprotein B on the particle surface, thereby leading to increased recognition and cellular uptake via the LDL receptor pathway.  相似文献   

4.
Summary The present study was undertaken to define the effects of lipoprotein-derived cholesterol and endogenous, de novo synthesized cholesterol on the ultrastructure and function of undifferentiated rat adrenocortical cells [lipoprotein (HDL3 and LDL) receptor-negative, zona glomerulosa-like adrenocortical cells] in primary culture. For this purpose human plasma high density lipoprotein (HDL3) or low density lipoprotein (LDL) was added to culture medium devoid of cholesterol. Steroid secretion remained at the low basal level even after addition of lipoproteins, and the amount of intracellular lipid droplets did not increase. When mevinolin (0.96 µg/ml), an inhibitor of cholesterol synthesis, was added to the culture medium, a low secretion of corticosterone was measured both in serum-free and serum-containing media. Ultrastructurally, lipid droplets disappeared after treatment with mevinolin in both media used. At this concentration of mevinolin cell proliferation was similar to that in the controls, but at higher concentrations (4.8 or 9.6 µg/ml) proliferation was inhibited to 42% and 26% in serum-free medium, and 20% and 12% in serum-supplemented medium, respectively. This study demonstrates that cell proliferation and synthesis of corticosterone by undifferentiated rat adrenocortical cells is identical in the absence or presence of exogenous lipoprotein cholesterol. Inhibition of de novo cholesterol synthesis by mevinolin over a period of 7 days does not inhibit corticosterone secretion or proliferation of cells but decreases the amount of intracellular lipid droplets, thus suggesting utilization of intracellular cholesterol esters. However, higher concentrations of mevinolin inhibit proliferation of cells both in serum-free and serum-containing media.  相似文献   

5.
Hypercholesterolemia induces increased transcytosis and accumulation of plasma lipoproteins in the arterial intima, where they interact with matrix proteins and become modified and reassembled lipoproteins. Chondroitin 6-sulfate-modified LDL (CS-mLDL) induces migration, proliferation, and lipid accumulation in human aortic smooth muscle cells (SMCs). To search for the mechanism(s) responsible for lipid accumulation, cultured SMC and macrophages were exposed to CS-mLDL, minimally modified LDL (mmLDL), and native LDL (as a control). Then the cellular uptake, degradation and expression of the LDL receptor (LDL-R) was determined using radioiodinated ligands, ACAT activity assay, fluorescence microscopy and RT-PCR. The uptake of CS-mLDL was 2-fold higher in SMC and 3-to 4-fold higher in macrophages as compared to LDL and mmLDL; the lysosomal degradation of CS-mLDL was slower in SMCs and considerably diminished in macrophages. Compared with LDL, CS-mLDL induced increased synthesis and accumulation of esterified cholesterol in SMCs (∼2-fold) and macrophages (∼10-fold) within an expanded acidic compartment. CS-mLDL and mmLDL down-regulate the gene expression of the LDL-R in the both cell types. Mechanisms of CS-mLDL-induced lipid accumulation in SMC and macrophages involve increased cellular uptake, and diminished cellular degradation that stimulates cholesterol ester synthesis and accumulation in cytoplasmic inclusions and in the lysosomal compartment in an undegraded form; modified lipoproteins induce down-regulation of LDL-R.  相似文献   

6.
A substrain of the human monocyte-like cell line U937, which is a cholesterol auxotroph, was used to study the effect of cellular cholesterol depletion on the expression of the type I Fc receptor for IgG (Fc gamma RI). Measurement of Fc gamma RI expression was performed by immunofluorescence and flow cytometry using the monoclonal antibody (mAb) 32.2, which is specific for an epitope on Fc gamma RI, and monomeric IgG2a, which binds to the ligand binding site of Fc gamma RI. Incubation of these cells for 24 h in growth medium containing delipidated fetal calf serum depletes cellular cholesterol without affecting growth or viability. While incubation of U937 cells with human interferon-gamma (IFN-gamma) increased Fc gamma RI expression, cholesterol depletion after cell growth in media containing delipidated serum and IFN-gamma resulted in reduced binding of both mAb 32.2 and IgG2a. A significant decrease in the number of cell surface binding sites, as measured by mean fluorescence intensity, was observed after cholesterol depletion. Supplementation of the delipidated serum medium with pure cholesterol in an ethanol/bovine serum albumin mixture, which replenished cellular cholesterol and supported growth, failed to restore antibody binding significantly. In contrast, low-density lipoprotein (LDL) which also delivered cholesterol to the cells restored binding both in terms of the number of the reactive cells and cell surface receptor density. High-density lipoprotein (HDL3), which does not deliver cholesterol to the cells, showed results similar to those obtained with pure cholesterol. This indicates that either LDL cholesterol is better utilized for membrane synthesis than pure cholesterol or that LDL provides another component, in addition to cholesterol, which is required for expression of Fc gamma RI, but not for growth. These studies indicate a role for LDL in regulating the expression of Fc gamma RI on the cell surface.  相似文献   

7.
The transfer of free cholesterol from [3H]cholesterol-labelled plasma lipoproteins to cultured human lung fibroblasts was studied in a serum-free medium. The uptake of [3H]cholesterol depended upon time of incubation, concentration of lipoprotein in the medium, and temperature. Modified (reduced and methylated) low-density lipoprotein (LDL), which did not enter the cells by the receptor pathway, gave a somewhat lower transfer rate than unmodified LDL, but if the transfer values for native LDL were corrected for the receptor-mediated uptake of cholesterol the difference was eliminated. The initial rates of transfer of [3H]cholesterol from LDL and high-density lipoprotein (HDL) were of the same order of magnitude (0.67 +/- 0.05 and 0.75 +/- 0.06 nmol of cholesterol/h per mg of cell protein, respectively) while that from very-low-density lipoprotein (VLDL) was much lower (0.23 +/- 0.02 nmol of cholesterol/h per mg) (means +/- S.D., n = 5). The activation energy for transfer of cholesterol from reduced, methylated LDL to fibroblasts was determined to be 57.5 kJ/mol. If albumin was added to the incubation medium the transfer of [3H]cholesterol was enhanced, while that of [14C]dipalmitoyl phosphatidylcholine was decreased compared with the protein-free system. The results demonstrate that, in spite of its low water solubility, free cholesterol can move from lipoproteins to cellular membranes, probably by aqueous diffusion. We propose that physicochemical transfer of free cholesterol may be a significant mechanism for net uptake of the sterol into the artery during atherogenesis.  相似文献   

8.
蛋白激酶C抑制剂对U937细胞清道夫受体功能的影响   总被引:8,自引:0,他引:8  
为了解细胞内蛋白质磷酸化水平对清道夫受体功能的影响,用蛋白激酶C抑掉剂形孢菌素(staurosporine,STA)处理人U937细胞,分别测定对照组和处理组细胞对碘标记的氧化低密度脂蛋白(^125I)ox-LDL的降解,结合,细胞表面受体复合物的内移以及细胞内脂质蓄积的程度,并利用放射自显影方法观察药物对细胞表面受体表达的影响,结果发现STA可以促进细胞结合(^125I)ox-LDL增加细胞表面  相似文献   

9.
Changes in low density lipoprotein (LDL) lipid composition were shown to alter its interaction with the LDL receptor, thus affecting its cellular uptake. Upon incubation of LDL with 5 units/ml cholesterol esterase (CEase) for 1 h at 37 degrees C, there was a 33% reduction in lipoprotein cholesteryl ester content, paralleled by an increment in its unesterified cholesterol. CEase-LDL, in comparison to native LDL, was smaller in size, possessed fewer free lysine amino groups (by 14%), and demonstrated reduced binding to heparin (by 83%) and reduced immunoreactivity against monoclonal antibodies directed toward epitopes along the LDL apoB-100. Incubation of CEase-LDL with the J-774 macrophage-like cell line resulted in about a 30% reduction in lipoprotein binding and degradation in comparison to native LDL, and this was associated with a 20% reduction in macrophage cholesterol mass. Similarly, CEase-LDL degradation by mouse peritoneal macrophages, human monocyte-derived macrophages, and human skin fibroblasts was reduced by 20-44% in comparison to native LDL. CEase-LDL uptake by macrophages was mediated via the LDL receptor and not the scavenger receptor. CEase activity toward LDL was demonstrated in plasma and in cells of the arterial wall such as macrophages and endothelial cells. Thus, CEase modification of LDL may take place in vivo, and this phenomenon may have a role in atherosclerosis.  相似文献   

10.
Studies of low density lipoprotein (LDL) metabolism in nonhuman model systems have indicated that the mammalian liver has dual mechanisms for the uptake and regulation of the concentration of plasma LDL. Heretofore, direct evaluation of lipoprotein uptake mechanisms in human hepatocytes has not been possible. In order to compare hepatocyte LDL uptake with fibroblast LDL metabolism, human hepatocytes were isolated and cultured from small biopsy specimens obtained from normolipidemic and homozygous familial hypercholesterolemic patients. Cells cultured in serum-free culture medium retained the morphological and biochemical characteristics of hepatocytes for at least 7 days. The uptake and degradation of LDL by hepatocytes was compared to that of the cultured human fibroblasts. Like fibroblasts, hepatocytes bound, internalized, and degraded LDL. In both cell types, uptake approached saturation at a concentration of 50 micrograms of LDL protein/ml. Competition for LDL binding by LDL, high density lipoprotein, and modified LD revealed that the hepatocyte binding was specific for LDL. Cellular cholesterol loading by incubation in LDL-enriched culture medium resulted in diminished LDL uptake in both cell types. Chemical modification of LDL by acetoacetylation, acetylation, and reductive methylation abolished LDL uptake and degradation by fibroblasts. However, hepatocytes bound and degraded the modified LDL at 30-50% the level of native LDL. Homozygous familial hypercholesterolemic hepatocytes were devoid of the LDL receptor pathway but metabolized native LDL to the extent observed with modified LDL uptake by normal hepatocytes. In contrast to the classic LDL receptor pathway, the second or alternate pathway does not lead to regulation of 3-hydroxy-3-methylglutaryl-CoA reductase activity. These findings indicate the presence of two separate pathways of LDL uptake in human hepatocytes which have different effects on hepatocytic cholesterol metabolism.  相似文献   

11.
Oxidation of low density lipoprotein (LDL) by cells of the arterial wall or in the presence of copper ions was shown to result in the peroxidation of its fatty acids as well as its cholesterol moiety. LDL incubation with cholesterol oxidase (CO) resulted in the conversion of up to 85% of the lipoprotein unesterified cholesterol (cholest-5-en-3-ol) to cholestenone (cholest-4-en-3-one) in a dose- and time-dependent pattern. Plasma very low density lipoprotein (VLDL) and high density lipoprotein (HDL) could be similarly modified by CO. In cholesterol oxidase-modified LDL (CO-LDL), unlike copper ion-induced oxidized LDL (Cu-Ox-LDL), there was no fatty acids peroxidation, and lipoprotein size or charge as well as LDL cholesteryl ester, phospholipids, and triglycerides content were not affected. CO-LDL, however, demonstrated enhanced susceptibility to oxidation by copper ions in comparison to native LDL. Upon incubation of CO-LDL with J-774 A.1 macrophage-like cell line, cellular uptake and degradation of the lipoprotein was increased by up to 62% in comparison to native LDL but was 15% lower than that of Cu-Ox-LDL. Similarly, the binding of CO-LDL to macrophages increased by up to 80%, and cellular cholesterol mass was increased 51% more than the mass obtained with native LDL. Several lines of evidence indicate that CO-LDL was taken up via the LDL receptor: 1) Excess amounts of unlabeled LDL, but not acetyl-LDL (Ac-LDL), effectively competed with 125I-CO-LDL for the uptake by cells. 2) The degradation of CO-LDL by various types of macrophages and by fibroblasts could be dissociated from that of Ac-LDL and was always higher than that of native LDL. 3) A monoclonal antibody to the LDL receptor (IgG-C7) and a monoclonal antibody to the LDL receptor binding domains on apoB-100 (B1B6) inhibited macrophage degradation of CO-LDL. The receptor for Cu-Ox-LDL, which is not shared with Ac-LDL, was also partially involved in macrophage uptake of CO-LDL, since Cu-Ox-LDL demonstrated some competition capability with CO-125I-LDL for its cellular degradation. CO-LDL cellular degradation was inhibited by chloroquine, thus implying lysosomal involvement in the cellular processing of the lipoprotein. Incubation of macrophages with LDL in the presence of increasing concentrations of cholestenone resulted in up to 52% enhanced lipoprotein cellular degradation suggesting that the cholestenone in CO-LDL might be involved in the enhanced cellular uptake of the modified lipoprotein.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
We investigated the effect of cellular cholesterol content on platelet activating factor (PAF)-stimulated Ca2+ mobilization in the human monocytic cell line U937. When cholesterol auxotroph U937 cells were depleted of cellular cholesterol by a 48-h incubation in delipidated medium, a 40% reduction in the PAF (100 nM)-stimulated increase in cytosolic Ca2+ concentration was seen. Ca2+ mobilization following stimulation with LTD4 (10 nM) or ATP (10 microM) was not affected. Addition of LDL (100 micrograms/ml, 24 h) to the delipidated medium completely recovered cellular cholesterol content and PAF-induced Ca2+ mobilization. These two LDL effects had very similar time- and dose-dependences. Partial recoveries of PAF-induced Ca2+ mobilization, seen after addition of pure cholesterol dissolved in ethanol (30 micrograms/ml, 24 h) or acetyl-LDL (100 micrograms/ml, 24 h), were associated with partial recoveries of cellular cholesterol content. Our results indicate that cellular cholesterol influences PAF-stimulated events in monocytic cells.  相似文献   

13.
The murine scavenger receptor class B, type I (mSR-BI) is a receptor for high density lipoprotein (HDL), low density lipoprotein (LDL), and acetylated LDL (AcLDL). It mediates selective uptake of lipoprotein lipid and stimulates efflux of [(3)H]cholesterol to lipoproteins. SR-BI-mediated [(3)H]cholesterol efflux was proposed to be independent of ligand binding. In this study, using anti-mSR-BI antibody KKB-1 and two mSR-BI mutants with altered ligand binding properties, we demonstrated that SR-BI-mediated [(3)H]cholesterol efflux to lipoproteins was correlated with ligand binding and lipid uptake activities of the receptor. The KKB-1 antibody, which blocked lipoprotein binding without substantially altering the cholesterol oxidase-accessible cellular [(3)H]cholesterol, also blocked [(3)H]cholesterol efflux to HDL and LDL. One of the SR-BI mutants, which has a double substitution of arginines for glutamines at positions 402 and 418 (Q402R/Q418R), exhibited a high level of LDL binding and lipid uptake from LDL, but lost most of the corresponding HDL receptor activity. This mutant could mediate efficient [(3)H]cholesterol efflux to LDL, but not to HDL. Another mutant, M158R, with an arginine in place of methionine at position 158, exhibited reduced HDL and LDL receptor activities, but apparently normal AcLDL receptor activity. This mutant could mediate efficient [(3)H]cholesterol efflux to AcLDL, but not to HDL or LDL. These results suggest that SR-BI-stimulated [(3)H]cholesterol efflux to lipoproteins critically depends on ligand binding to this receptor and raise the possibility that the mechanisms of selective lipid uptake and [(3)H]cholesterol efflux may be intimately related.  相似文献   

14.
LDL modified by incubation with platelet secretory products caused cholesterol accumulation and stimulation of cholesterol esterification in mouse peritoneal macrophages. Its uptake by the macrophages was a receptor-mediated process, not susceptible to competition by acetyl-LDL or polyanions suggesting independence of the scavenger receptor. Stimulation of the esterification process in macrophages by this modified LDL was inhibited by the lysosomal inhibitor chloroquine, indicating requirement for cellular uptake and lysosomal hydrolysis of the lipoprotein. Within the cell, the modified LDL inhibited cellular biosynthesis of triglycerides in a manner similar to the action of acetyl-LDL but different to the effect of native LDL. In the presence of HDL, acting in the medium as an acceptor for cholesterol, a low rate of cholesterol efflux from cells incubated with this modified LDL as well as with acetyl-LDL was demonstrated. A small reduction in cholesteryl ester synthesis was found in these cells, compared to a 60% reduction in cells incubated with native LDL. Thus it was demonstrated that LDL modified by platelet secretory products could induce macrophage cholesterol accumulation even though it was recognized and taken up via the regulatory LDL receptor.  相似文献   

15.
Some fat-soluble bioactive substances incorporated into low density lipoprotein (LDL) may be delivered into cells via LDL receptor pathway influencing cellular functions. In this study, we synthesized a number of fat-soluble isoflavone esters and investigated their incorporation into LDL as well as their delivery into U937 cells. Using an artificial transfer system (Celite dispersion), genistein and daidzein oleates and daidzein dilinoleate were efficiently incorporated into LDL with concentrations ranging between 2.7 to 16.9 isoflavone molecules/LDL particle, while much smaller amounts of unesterified isoflavones and genistein stearates were transferred into LDL. LDL containing 7-oleates or 4',7-dioleates of genistein and daidzein significantly reduced U937 cell proliferation by 36-43%. The strongest inhibitory effect was shown by daidzein 4',7-dilinoleate with 93% reduction of cell proliferation. Neither of the 4'-oleates of genistein and daidzein contained in LDLs exhibited antiproliferative effects although they were incorporated into LDL. In summary, we demonstrated that isoflavones made fat-soluble by esterification can be incorporated into LDL in vitro and delivered into cultured U937 cells via the LDL-receptor pathway, reducing the cell proliferation.  相似文献   

16.
African trypanosomes are lipid auxotrophs that live in the bloodstream of their human and animal hosts. Trypanosomes require lipoproteins in addition to other serum components in order to multiply under axenic culture conditions. Delipidation of the lipoproteins abrogates their capacity to support trypanosome growth. Both major classes of serum lipoproteins, LDL and HDL, are primary sources of lipids, delivering cholesterol esters, cholesterol, and phospholipids to trypanosomes. We show evidence for the existence of a trypanosome lipoprotein scavenger receptor, which facilitates the endocytosis of both native and modified lipoproteins, including HDL and LDL. This lipoprotein scavenger receptor also exhibits selective lipid uptake, whereby the uptake of the lipid components of the lipoprotein exceeds that of the protein components. Trypanosome lytic factor (TLF1), an unusual HDL found in human serum that protects from infection by lysing Trypanosoma brucei brucei, is also bound and endocytosed by this lipoprotein scavenger receptor. HDL and LDL compete for the binding and uptake of TLF1 and thereby attenuate the trypanosome lysis mediated by TLF1. We also show that a mammalian scavenger receptor facilitates lipid uptake from TLF1 in a manner similar to the trypanosome scavenger receptor. Based on these results we propose that HDL, LDL, and TLF1 are all bound and taken up by a lipoprotein scavenger receptor, which may constitute the parasite's major pathway mediating the uptake of essential lipids.  相似文献   

17.
Human plasma low density lipoprotein (LDL) that had been rendered polycationic by coupling with N, N-dimethyl-1, 3-propanediamine (DMPA) was shown by electron microscopy to bind in clusters to the surface of human fibroblasts. The clusters resembled those formed by polycationic ferritin (DMPA-feritin), a visual probe that binds to anionic site on the plasma membrane. Biochemical studies with (125)I-labeled DMPA-LDL showed that the membrane-bound lipoprotein was internalized and hydrolyzed in lysosomes. The turnover time for cell bound (125)I-DMPA-LDL, i.e., the time in which the amount of (125)I-DMPA-LDL degraded was equal to the steady-state cellular content of the lipoprotein, was about 50 h. Because the DMPA-LDL gained access to fibroblasts by binding nonspecifically to anionic sites on the cell surface rather than by binding to the physiologic LDL receptor, its uptake failed to be regulated under conditions in which the uptake of native LDL was reduced by feedback suppression of the LDL receptor. As a result, unlike the case with native LDL, the DMPA-LDL accumulated progressively within the cell, and this led to a massive increase in the cellular content of both free and esterified cholesterol. Studies with (14)C-oleate showed that at least 20 percent of the accumulated cholesteryl esters represented cholesterol that had been esterified within the cell. After 4 days of incubation with 10 μg/ml of DMPA-LDL, fibroblasts had accumulated so much cholesteryl ester that neutral lipid droplets were visible at the light microscope level with Oil Red O staining. By electron microscopy, these intracellular lipid droplets were observed to lack a tripartite limiting membrane. The ability to cause the overaccumulation of cholesteryl esters within cells by using DMPA-LDL provides a model system for study of the pathologic consequences at the cellular level of massive deposition of cholesteryl ester.  相似文献   

18.
Effects of supplementation of growth-promoting cholesterol on metabolism of the cytotoxic (n - 6) polyunsaturated fatty acids in cultured human monocyte-like cells (U937) have been examined. U937 cells were incubated in 5% delipidated fetal bovine serum containing 0 or 38.7 microM cholesterol. The rate of uptake and the distribution of metabolites of (n - 6) fatty acids (such as 18:2(n - 6), 18:3(n - 6), and 20:3(n - 6), and 20:4(n - 6)) were examined by adding radiolabelled fatty acid at a level of 1 microgram/mL (3.3 microM for 20-carbon fatty acids and 3.6 microM for 18-carbon-fatty acids). For assessing the cytotoxicity, (n - 6) fatty acids were added to medium at a concentration of 5 micrograms/mL (16.4 microM for 20-carbon fatty acids and 17.9 microM for 18-carbon fatty acids). Cholesterol supplementation suppressed the uptake of all (n - 6) fatty acids and reduced the cytotoxic effects of 18:2(n - 6), 20:3(n - 6), and 20:4(n - 6), but not 18:3(n - 6). In addition, cholesterol supplementation increased peroxide production and metabolism of (n - 6) fatty acids in U937 cells. Thus, the differential suppressive effect of cholesterol on the cytotoxicity of different fatty acids could not be attributed to an inhibitory effect on fatty acid delta 6- and delta 5-desaturation, or to an antioxidant effect on peroxide formation.  相似文献   

19.
The uptake of native and modified low density lipoprotein (LDL) in foam cells in atherosclerotic tissue was studied in an in vitro perfusion system for rabbit aorta. Experimental atherosclerosis was induced in rabbits by a combination of cholesterol feeding and mechanical injury. The aorta was perfused in an incubation chamber. A trace-label, radioiodinated tyramine-cellobiose, was used to study cellular uptake of lipoproteins. After perfusion, the tissue was digested and cells were isolated by centrifugation in a density gradient. About 40 times more LDL per cell was accumulated in the foam cell fraction than in the smooth muscle cell fraction. When the cellular uptake of LDL and acetylated LDL (AcLDL) was compared, about 4 times more AcLDL than LDL was taken up by the foam cells, suggesting that the scavenger receptor is expressed in these cells. In a competition experiment, the uptake of LDL into foam cells was reduced by 70% when a tenfold excess of AcLDL was added. This experiment suggests that native LDL is taken up by the same mechanism as AcLDL. The accumulation of radiolabeled LDL in plaques and in foam cells was reduced by 30-55% by adding vitamin E (0.1 mg/ml) to the system. These studies show an uptake of LDL by foam cells in the atherosclerotic tissue. Furthermore, these cells seem to express the scavenger receptor. The competition experiment would suggest that native LDL is taken up by the scavenger receptor. The observation that an antioxidant, vitamin E, may decrease this uptake suggests that oxidative modification of LDL is of importance for this process.  相似文献   

20.
Hypertriglyceridemic (HTG) very low density lipoproteins (VLDL) from subjects with type IV hyperlipoproteinemia induce both cholesteryl ester (CE) and triglyceride (TG) accumulation in cultured J774 macrophages. We examined whether the cytokine interferon-gamma (IFN-gamma), which is expressed by lymphocytes in atherosclerotic lesions, would modulate macrophage uptake of HTG -VLDL. Incubation of cells with HTG -VLDL alone significantly increased cellular CE and TG mass 17- and 4.3-fold, respectively, while cellular free cholesterol (FC) was unaffected. Pre-incubation of cells with IFN-gamma (50 U/ml) prior to incubation with HTG -VLDL caused a marked enhancement in cellular CE and TG 27- and 6-fold over no additions (controls), respectively, and a 1.5-fold increase in FC. IFN-gamma increased low density lipoprotein (LDL)-induced cellular CE 2-fold compared to LDL alone. IFN-gamma did not enhance the uptake of type III (apoE2/E2) HTG -VLDL or VLDL from apoE knock-out mice. Incubations in the presence of a lipoprotein lipase (LPL) inhibitor or an acylCoA:cholesterol acyltransferase (ACAT) inhibitor demonstrated that the IFN-gamma-enhanced HTG -VLDL uptake was dependent on LPL and ACAT activities. IFN-gamma significantly increased the binding and degradation of 125I-labeled LDL. Binding studies with 125I-labeled alpha2-macroglobulin, a known LDL receptor-related protein (LRP) ligand, and experiments with copper-oxidized LDL indicated that the IFN-gamma-enhanced uptake was not due to increased expression of the LRP or scavenger receptors. Thus, IFN-gamma may promote foam cell formation by accelerating macrophage uptake of native lipoproteins. IFN-gamma-stimulated CE accumulation in the presence of HTG -VLDL occurs via a process that requires receptor binding-competent apoE and active LPL. IFN-gamma-enhanced uptake of both HTG -VLDL and LDL is mediated by the LDL-receptor and requires ACAT-mediated cholesterol esterification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号