首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.

Background  

The TetR family member AmtR is the central regulator of nitrogen starvation response in Corynebacterium glutamicum. While the AmtR regulon was physiologically characterized in great detail up to now, mechanistic questions of AmtR binding were not addressed. This study presents a characterization of functionally important amino acids in the DNA binding domain of AmtR and of crucial nucleotides in the AmtR recognition motif.  相似文献   

3.
4.
5.
6.
7.
8.
L-Glutamate is made with Corynebacterium glutamicum on a scale of more than 106 tons/year. Nevertheless, formation of this amino acid is enigmatic and there is very limited molecular information available to unravel the apparently complex conditions leading to L-glutamate efflux. Here, we report the isolation and overexpression of the genes involved in lipid synthesis: acp, fadD 15, cma, cls, pgsA2, cdsA, gpsA, and plsC, and the inactivation of cma and cls. In addition, the consequences for phospholipid content, temperature sensitivity, as well as detergent-independent and detergent-dependent L-glutamate efflux were quantified. An in part strong alteration of the phospholipid composition was achieved; for instance, overexpression offadD15 encoding an acyl-CoA ligase resulted in an increase of phosphatidyl inositol from 12.6 to 30.2%. All strains, except that overexpressing acp (acyl carrier protein), exhibited increased temperature sensitivity, with the strongest sensitivity present upon cls (cardiolipin synthetase) inactivation. As a consequence of the genetically modified lipid synthesis, L-glutamate efflux changed quite dramatically; for instance, overexpression of plsC (acylglycerolacyl transferase) resulted in a detergent-triggered increase of L-glutamate accumulation from 92 mM to 108 mM, whereas acp overexpression reduced the accumulation to 24 mM. With some of the overexpressed genes, substantial L-glutamate excretion even without detergent addition was obtained when the fermentation temperature was elevated. These data show that the chemical and physical properties of the cytoplasmic membrane are altered and suggest that this is a necessary precondition to achieve L-glutamate efflux.  相似文献   

9.
10.
11.
12.
13.
14.
Lipid II flippases play an essential role in cell growth and the maintenance of cell shape in many rod‐shaped bacteria. The putative lipid II flippase RodA is an integral membrane protein and member of the SEDS (shape, elongation, division and sporulation) protein family. In contrast to its homologues in Escherichia coli and Bacillus subtilis little is known about the role of RodA in actinobacteria. In this study, we describe the localization and function of RodA in Corynebacterium glutamicum, a rod‐shaped, apically growing actinobacterium. RodA‐GFP localizes exclusively at the cell poles. Surprisingly, time‐lapse microscopy revealed that apical cell growth is sustained in a rodA deletion strain. However, growth rates and antibiotic susceptibility are altered. In the absence of RodA, it appears that apical growth is driven by lateral diffusion of lipid II that is likely flipped by the septal flippase, FtsW. Furthermore, we applied a previously described synthetic in vivo system in combination with FRET to identify an interaction between C. glutamicum RodA and the polar growth organizing protein DivIVA.  相似文献   

15.
16.
17.
Corynebacterium glutamicum ATCC 17965 was cultivated in a 4-L batch aerated fermentor with glucose, fructose and mixtures of these two sugars in various proportions as carbon sources and with different concentrations of minerals and vitamins. A multilayer centrifugation technique was devised to obtain cell extracts in order to assess intracellular production of glutamate and partitioning between intracellular and extracellular spaces for lactate and acetate, the main by-products produced during the growth phase. Glutamate production increased with the proportion of glucose in the carbon source. The average value for the intracellular concentration of glutamate obtained with basic glucose medium was increased three-fold when initial concentrations of vitamins and minerals were increased four-fold. In this case, overall production of glutamate (16.3 mM) reached the highest value obtained. Production of acetate was weak on all media types (< 1.6 mm). it was the same for lactate synthesis in media where glucose remained the major carbon source (< 2.3 mm). production of lactate was significantly higher on media where fructose was the main carbon source (> 10 mM to 60 mM). The increase in lactate production and the decrease in glutamate production were correlated to a modification of carbon flux distribution between the metabolic pathways as the fructose proportion was increased. An increase in the concentration of minerals favoured production of glutamate during growth. This was correlated with an increase in the NADPH,H+ production rate. Received 16 January 1996/ Accepted in revised form 14 January 1997  相似文献   

18.
19.
20.
Corynebacterium glutamicum grows on a variety of carbohydrates and organic acids. Uptake of the preferred carbon source glucose via the phosphoenolpyruvate-dependent phosphotransferase system (PTS) is reduced during coutilization of glucose with acetate, sucrose, or fructose compared to growth on glucose as the sole carbon source. Here we show that the DeoR-type regulator SugR (NCgl1856) represses expression of ptsG, which encodes the glucose-specific PTS enzyme II. Overexpression of sugR resulted in reduced ptsG mRNA levels, decreased glucose utilization, and perturbed growth on media containing glucose. In mutants lacking sugR, expression of the ptsG'-'cat fusion was increased two- to sevenfold during growth on gluconeogenic carbon sources but remained similar during growth on glucose or other sugars. As shown by DNA microarray analysis, SugR also regulates expression of other genes, including ptsS and the putative NCgl1859-fruK-ptsF operon. Purified SugR bound to DNA regions upstream of ptsG, ptsS, and NCgl1859, and a 75-bp ptsG promoter fragment was sufficient for SugR binding. Fructose-6-phosphate interfered with binding of SugR to the ptsG promoter DNA. Thus, while during growth on gluconeogenic carbon sources SugR represses ptsG, ptsG expression is derepressed during growth on glucose or under other conditions characterized by high fructose-6-phosphate concentrations, representing one mechanism which allows C. glutamicum to adapt glucose uptake to carbon source availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号