首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The anaerobic phenyl methyl ether cleavage in acetogenic bacteria is mediated by multicomponent enzyme systems designated O-demethylases. Depending on the growth substrate, different O-demethylases are induced in Acetobacterium dehalogenans. A vanillate- and a veratrol-O-demethylase of this organism have been described earlier. The methyltransferase I (MT I), a component of this enzyme system, catalyzes the ether cleavage and the transfer of the methyl group to a super-reduced corrinoid bound to a protein. The MT I of the vanillate- and veratrol-O-demethylase (MT I(van) and MT I(ver)) were found to be zinc-containing enzymes. By site-directed mutagenesis, putative zinc ligands were identified, from which the following unique zinc-binding motifs were derived: E-X(14)-E-X(20)-H for MT I(van) and D-X(27)-C-X(39)-C for MT I(ver).  相似文献   

2.
Acetobacterium woodii produced catechol (up to 7.84 mM) by demethylating 2-methoxyphenol during growth in the presence or absence of fructose. The highest product concentrations were obtained when 2-methoxyphenol was the sole energy source but the highest substrate conversion (97%) was obtained in fructose-limited chemostat culture. Growing cells were the most suitable form of the biocatalyst since the catalytic activity was 5-fold higher than in harvested cells.  相似文献   

3.
Anaerobic O-demethylases are inducible multicomponent enzymes which mediate the cleavage of the ether bond of phenyl methyl ethers and the transfer of the methyl group to tetrahydrofolate. The genes of all components (methyltransferases I and II, CP, and activating enzyme [AE]) of the vanillate- and veratrol-O-demethylases of Acetobacterium dehalogenans were sequenced and analyzed. In A. dehalogenans, the genes for methyltransferase I, CP, and methyltransferase II of both O-demethylases are clustered. The single-copy gene for AE is not included in the O-demethylase gene clusters. It was found that AE grouped with COG3894 proteins, the function of which was unknown so far. Genes encoding COG3894 proteins with 20 to 41% amino acid sequence identity with AE are present in numerous genomes of anaerobic microorganisms. Inspection of the domain structure and genetic context of these orthologs predicts that these are also reductive activases for corrinoid enzymes (RACEs), such as carbon monoxide dehydrogenase/acetyl coenzyme A synthases or anaerobic methyltransferases. The genes encoding the O-demethylase components were heterologously expressed with a C-terminal Strep-tag in Escherichia coli, and the recombinant proteins methyltransferase I, CP, and AE were characterized. Gel shift experiments showed that the AE comigrated with the CP. The formation of other protein complexes with the O-demethylase components was not observed under the conditions used. The results point to a strong interaction of the AE with the CP. This is the first report on the functional heterologous expression of acetogenic phenyl methyl ether-cleaving O-demethylases.  相似文献   

4.
Summary A simple procedure for screening Clostridium acetobutylicum for biotransformations to produce alcohols was developed by supplementing rich medium with glucose and butyric acid to obtain butanol-producing cultures. No special apparatus was required to maintain anaerobic conditions. The validity of the method was established by demonstrating that the cultures could reduce alicyclic and aromatic aldehydes and ketones to the corresponding alcohols.  相似文献   

5.
Acetogenic bacteria such as Acetobacterium woodii use the Wood–Ljungdahl pathway (WLP) for fixation of CO2 and energy conservation. This pathway enables conversion of diverse substrates to the main product of acetogenesis, acetate. Methyl group containing substrates such as methanol or methylated compounds, derived from pectin, are abundant in the environment and a source for CO2. Methyl groups enter the WLP at the level of methyltetrahydrofolic acid (methyl-THF). For methyl transfer from methanol to THF a substrate-specific methyltransferase system is required. In this study, we used genetic methods to identify mtaBC2A (Awo_c22760-Awo_c22740) as the methanol-specific methyltransferase system of A. woodii. After methyl transfer, methyl-THF serves as carbon and/or electron source and the respiratory Rnf complex is required for redox homeostasis if methanol + CO2 is the substrate. Resting cells fed with methanol + CO2, indeed converted methanol to acetate in a 4:3 stoichiometry. When methanol was fed in combination with other electron sources such as H2 + CO2 or CO, methanol was converted Rnf-independently and the methyl group was condensed with CO to build acetate. When fed in combination with alternative electron sinks such as caffeate methanol was oxidized only and resulting electrons were used for non-acetogenic growth. These different pathways for the conversion of methyl-group containing substrates enable acetogens to adapt to various ecological niches and to syntrophic communities.  相似文献   

6.
7.
用基因工程手段生产HBsAg蛋白   总被引:1,自引:0,他引:1  
乙型肝炎是由HBV引起的全球性传染病,其疫苗的研究很早就受到重视。乙肝疫苗从血源疫苗发展到DNA疫苗,已在酵母、病毒和哺乳动物的表达系统中成功地实现了HBsAg的表达。由于植物生物反应器的发展,在植物中表达疫苗正成为乙肝疫苗新的研究热点。本综述了用基因工程手段生产HBsAg蛋白的3种方法,即利用微生物、动物和植物来生产HBsAg蛋白。  相似文献   

8.
The flavoenzyme vanillyl-alcohol oxidase (VAO) catalyzes the conversion of 4-alkylphenols through the initial formation of p-quinone methide intermediates. These electrophilic species are stereospecifically attacked by water to yield (R)-1-(4'-hydroxyphenyl)alcohols or rearranged in a competing reaction to 1-(4'-hydroxyphenyl)alkenes. Here, we show that the product spectrum of VAO can be controlled by medium engineering. When the enzymatic conversion of 4-propylphenol was performed in organic solvent, the concentration of the alcohol decreased and the concentration of the cis-alkene, but not the trans-alkene, increased. This change in selectivity occurred in both toluene and acetonitrile and was dependent on the water activity of the reaction medium. A similar shift in alcohol/cis-alkene product ratio was observed when the VAO-mediated conversion of 4-propylphenol was performed in the presence of monovalent anions that bind specifically near the enzyme active site.  相似文献   

9.
10.
Scent engineering: toward the goal of controlling how flowers smell   总被引:3,自引:0,他引:3  
Floral scent has an important role in the reproductive processes of many plants and a considerable economic value in guaranteeing yield and quality of many crops. It also enhances the aesthetic properties of ornamental plants and cut flowers. Many floral scent volatiles fall into the terpenoid or phenylpropanoid/benzenoid classes of compounds. Although the biochemistry of floral scent is still a relatively new field of investigation, in the past decade investigators have begun to identify 'scent genes'. Several of these genes, most of which, but not all, encode enzymes that directly catalyze the formation of volatile terpenoid or phenylpropanoid/benzenoid compounds, have now been used to manipulate, through genetic engineering techniques, the mix of volatiles emitted from the flowers of several plant species. The outcomes of these experiments, which are discussed here, have indicated that the genetic engineering approach to altering floral scents has potential; however, they have also revealed the limitations that result from our inadequate knowledge of the metabolic pathways responsible for scents and their regulation.  相似文献   

11.
Plant protein improvement by genetic engineering: use of synthetic genes   总被引:1,自引:0,他引:1  
Methods now exist to construct genes coding for synthetic proteins enriched in essential amino acid content. The production of these synthetic proteins in potato tubers can improve the nutritive value of the potato and increase its importance as a basic food crop.  相似文献   

12.
Since its development in the mid-1980s, microprojectile bombardment has been widely employed as a method for direct gene transfer into a wide range of plants, including the previously difficult-to-transform monocotyledonous species. Although the numerous instruments available for microprojectile-mediated gene delivery and their applications have been widely discussed, less attention has been paid to the critical factors which affect the efficiency of this method of gene delivery. In this review we do not wish to describe the array of devices used for microprojectile delivery or their uses which have already been definitively described, but instead wish to report on research developments investigating the factors which affect microprojectile-mediated transformation of plants.  相似文献   

13.
DNA polymerases recognize their substrates with exceptionally high specificity, restricting the use of unnatural nucleotides and the applications they enable. We describe a strategy to expand the substrate range of polymerases. By selecting for the extension of distorting 3' mismatches, we obtained mutants of Taq DNA polymerase that not only promiscuously extended mismatches, but had acquired a generic ability to process a diverse range of noncanonical substrates while maintaining high catalytic turnover, processivity and fidelity. Unlike the wild-type enzyme, they bypassed blocking lesions such as an abasic site, a thymidine dimer or the base analog 5-nitroindol and performed PCR amplification with complete substitution of all four nucleotide triphosphates with phosphorothioates or the substitution of one with the equivalent fluorescent dye-labeled nucleotide triphosphate. Such 'unfussy' polymerases have immediate utility, as we demonstrate by the generation of microarray probes with up to 20-fold brighter fluorescence.  相似文献   

14.
An expression vector, pIN-GT, encoding the soluble form of beta 1,4-galactosyltransferase (GT) has been constructed from human GT cDNAs and the pIN-III-ompA2 expression vector. Escherichia coli strain SB221 harboring the pIN-GT plasmid produces and secretes a fusion protein consisting of the ompA signal and GT. The expression of GT was detected by assaying enzymatic activity as well as by Western blotting using anti-GT antibodies. The recombinant GT was purified to homogeneity by N-acetylglucosamine-Sepharose affinity chromatography. The NH2-terminal peptide sequence of purified GT confirmed the cleavage site of the fusion protein by bacterial signal peptidase. This expression system was utilized to produce mutant forms of GT in order to identify specific amino acids involved in substrate binding sites. Photoaffinity labeling of GT with UDP-galactose analog, 4-azido-2-nitrophenyluridylylpyrophosphate (ANUP), followed by cyanogen bromide (CNBr) cleavage revealed that ANUP bound to a fragment of GT composed of amino acid residues from Asp276 to Met328. Within this peptide segment, Tyr284, Tyr287, Tyr309, Trp310 and Trp312 were separately substituted into Gly and Tyr287 into Phe by site-directed mutagenesis. Enzymatic activity assay showed drastic reduction of the activity in all of the mutants except that Tyr287----Phe remained as active as wild-type GT. Kinetic studies of the mutated GT showed that Tyr284, Tyr309 and Trp310 are critically involved in the N-acetyglucosamine binding and Tyr309 is involved in UDP-galactose binding as well.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Defining how the agonist-receptor interaction differs from that of the antagonist-receptor and understanding the mechanisms of receptor activation are fundamental issues in cell signalling. The V1a vasopressin receptor (V1aR) is a member of a family of related G-protein coupled receptors that are activated by neurohypophysial peptide hormones, including vasopressin (AVP). It has recently been reported that an arginyl in the distal N-terminus of the V1aR is critical for binding agonists but not antagonists. To determine specific features required at this locus to support high affinity agonist binding and second messenger generation, Arg46 was substituted by all other 19 encoded amino acids. Our data establish that there is an absolute requirement for arginyl, as none of the [R46X]V1aR mutant constructs supported high affinity agonist binding and all 19 had defective signalling. In contrast, all of the mutant receptors possessed wildtype binding for both peptide and nonpeptide antagonists. The ratio of Ki to EC50, an indicator of efficacy, was increased for all substitutions. Consequently, although [R46X]V1aR constructs have a lower affinity for agonist, once AVP has bound all 19 are more likely than the wildtype V1aR to become activated. Therefore, in the wildtype V1aR, Arg46 constrains the inactive conformation of the receptor. On binding AVP this constraint is alleviated, promoting the transition to active V1aR. Our findings explain why arginyl is conserved at this locus throughout the evolutionary lineage of the neurohypophysial peptide hormone receptor family of G-protein coupled receptors.  相似文献   

16.
17.
Applied Microbiology and Biotechnology - Metals are essential to all organisms; accordingly, cells employ numerous genes to maintain metal homeostasis as high levels can be toxic. In the present...  相似文献   

18.
In an attempt to generate mutant aminoacyl-tRNA synthetases capable of charging non-canonical amino acids, a series of yeast tyrosyl-tRNA synthetase (TyrRS) mutants was constructed by site-specific mutagenesis of putative active site residues, which were deduced by analogy with those of Bacillus stearothermophilus TyrRS. Among these mutants, one with the replacement of tyrosine at position 43 by glycine, "Y43G," was found to be able to utilize several 3-substituted tyrosine analogues as substrates for aminoacylation. The catalytic efficiency (k(cat)/K(m)) of mutant Y43G for aminoacylation with L-tyrosine was about 400-fold decreased as compared to that of the wild-type TyrRS. On the other hand, the ability to utilize 3-iodo-L-tyrosine was newly generated in this mutant TyrRS, since the wild-type TyrRS could not accept 3-iodo-L-tyrosine at all under physiological conditions. This mutant TyrRS should serve as a new tool for site-specific incorporation of non-canonical amino acids, such as those in 3-substituted tyrosine analogues, into proteins in an appropriate translation system in vivo or in vitro.  相似文献   

19.
20.
Acetyl-CoA carboxylase (ACC) and propionyl-CoA carboxylase (PCC) catalyze the carboxylation of acetyl- and propionyl-CoA to generate malonyl- and methylmalonyl-CoA, respectively. Understanding the substrate specificity of ACC and PCC will (1) help in the development of novel structure-based inhibitors that are potential therapeutics against obesity, cancer, and infectious disease and (2) facilitate bioengineering to provide novel extender units for polyketide biosynthesis. ACC and PCC in Streptomyces coelicolor are multisubunit complexes. The core catalytic beta-subunits, PccB and AccB, are 360 kDa homohexamers, catalyzing the transcarboxylation between biotin and acyl-CoAs. Apo and substrate-bound crystal structures of PccB hexamers were determined to 2.0-2.8 A. The hexamer assembly forms a ring-shaped complex. The hydrophobic, highly conserved biotin-binding pocket was identified for the first time. Biotin and propionyl-CoA bind perpendicular to each other in the active site, where two oxyanion holes were identified. N1 of biotin is proposed to be the active site base. Structure-based mutagenesis at a single residue of PccB and AccB allowed interconversion of the substrate specificity of ACC and PCC. The di-domain, dimeric interaction is crucial for enzyme catalysis, stability, and substrate specificity; these features are also highly conserved among biotin-dependent carboxyltransferases. Our findings enable bioengineering of the acyl-CoA carboxylase (ACCase) substrate specificity to provide novel extender units for the combinatorial biosynthesis of polyketides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号