首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To understand the plant response to oxidative stresses, we studied the influence of magnesium (Mg++) deficiency on the formation of hydrogen peroxide (H2O2), malondialdehyde (MDA), and protease activity in kidney bean plants. The expression pattern of proteins under Mg++ deficiency also was examined via two-dimensional electrophoresis. The formation of H2O2 and MDA increased in the primary leaves of plants grown in a nutrient solution deficient in Mg++. Protease activity in Mg++-deficient plants was also higher than in those grown with sufficient Mg++. The expression pattern of the proteins showed that 25 new proteins were generated and 64 proteins disappeared under Mg++-deficient conditions. Therefore, a deficiency in Mg++ may cause oxidative stress and a change in protein expression. Some of these proteins may be related to the oxidative stress induced by Mg++ deficiency.  相似文献   

2.
We investigated the effects of dietary iron deficiency on the redox system in the heart. Dietary iron deficiency increased heart weight and accumulation of carbonylated proteins. However, expression levels of heme oxygenase-1 and LC3-II, an antioxidant enzyme and an autophagic marker, respectively, in iron-deficient mice were upregulated compared to the control group, resulting in a surrogate phenomenon against oxidative stress.  相似文献   

3.
Deficiency in methionine or choline can induce oxidative stress in various organs such as liver, kidney, heart, and brain. This study was to examine the effects of alpha-lipoic acid (LA) on oxidative stress induced by methionine and choline deficiency (MCD) in several brain structures. Male mice C57BL/6 (n = 28) were divided into four groups: (1) control – continuously fed with standard chow; (2) LA – fed with standard chow and receiving LA; (3) MCD2 – fed with MCD diet for two weeks, and (4) MCD2+LA – fed with MCD diet for two weeks and receiving LA (100 mg/kg/day intraperitonealy [i.p.]). Brain tissue (cortex, hypothalamus, striatum and hippocampus) was taken for determination of oxidative stress parameters. MCD diet induced a significant increase in malondialdehyde and NOx concentration in all brain regions, while LA restored their content to normal values. Similar to this, in MCD2 group, activity of total SOD, MnSOD, and Cu/ZnSOD was reduced by MCD diet, while LA treatment improved their activities in all brain structures. Besides, in MCD2 group a decrease in catalase activity in cortex and GSH content in hypothalamus was evident, while LA treatment induced an increase in catalase activity in cortex and striatum and GSH content in hypothalamus. LA treatment can significantly reduce lipid peroxidation and nitrosative stress, caused by MCD diet, in all brain regions by restoring antioxidant enzymes activities, predominantly total SOD, MnSOD, and Cu/ZnSOD, and to a lesser extent by modulating catalase activity and GSH content. LA supplementation may be used in order to prevent brain oxidative injury induced by methionine and choline deficiency.  相似文献   

4.
Copper (Cu) deficiency decreases the activity of Cu-dependent antioxidant enzymes such as Cu,zinc-superoxide dismutase (Cu,Zn-SOD) and may be associated with increased susceptibility to oxidative stress. Iron (Fe) overload represents a dietary oxidative stress relevant to overuse of Fe-containing supplements and to hereditary hemochromatosis. In a study to investigate oxidative stress interactions of dietary Cu deficiency with Fe overload, weanling male Long–Evans rats were fed one of four sucrose-based modified AIN-93G diets formulated to differ in Cu (adequate 6 mg/kg diet vs. deficient 0.5 mg/kg) and Fe (adequate 35 mg/kg vs. overloaded 1500 mg/kg) in a 2×2 factorial design for 4 weeks prior to necropsy. Care was taken to minimize oxidation of the diets prior to feeding to the rats. Liver and plasma Cu content and liver Cu,Zn-SOD activity declined with Cu deficiency and liver Fe increased with Fe overload, confirming the experimental dietary model. Liver thiobarbituric acid reactive substances were significantly elevated with Fe overload (pooled across Cu treatments, 0.80±0.14 vs. 0.54±0.08 nmol/mg protein; P<.0001) and not affected by Cu deficiency. Liver cytosolic protein carbonyl content and the concentrations of several oxidized cholesterol species in liver tissue did not change with these dietary treatments. Plasma protein carbonyl content decreased in Cu-deficient rats and was not influenced by dietary Fe overload. The various substrates (lipid, protein and cholesterol) appeared to differ in their susceptibility to the in vivo oxidative stress induced by dietary Fe overload, but these differences were not exacerbated by Cu deficiency.  相似文献   

5.
Cholestasis, encountered in a variety of clinical disorders, is characterized by intracellular accumulation of toxic bile acids in the liver. Furthermore, oxidative stress plays an important role in the pathogenesis of bile acids. Taurolithocholic acid (TLC) was revealed in previous studies as the most pro‐oxidative bile acid. Melatonin, a well‐known antioxidant, is a safe and widely used therapeutic agent. Herein, we investigated the hepatoprotective role of melatonin on lipid and protein oxidation induced by TLC alone and in combination with FeCl3 and ascorbic acid in rat liver homogenates and hepatic membranes. The lipid peroxidation products, malondialdehyde and 4‐hydroxyalkenals (MDA + 4‐HDA), and carbonyl levels were quantified as indices of oxidative damage to hepatic lipids and proteins, respectively. In the current study, the rise in MDA + 4‐HDA levels induced by TLC was inhibited by melatonin in a concentration‐dependent manner in both liver homogenates and in hepatic membranes. Melatonin also had protective effects against structural damage to proteins induced by TLC in membranes. These results suggest that the indoleamine melatonin may potentially act as a protective agent in the therapy of those diseases that involve bile acid toxicity. J. Cell. Biochem. 110: 1219–1225, 2010. Published 2010 Wiley‐Liss, Inc.  相似文献   

6.
7.
2,4,6-三氯苯酚诱导鲫鱼肝脏自由基的产生及其氧化应激   总被引:4,自引:0,他引:4  
采用电子顺磁共振的方法,研究了鲫鱼腹腔注射2,4,6-三氯苯酚(2,4,6-TCP)不同时间(4、8、12、24、72 h)后其肝脏自由基强度的变化、氧化应激反应及其损伤机理.结果表明:2,4,6-TCP极显著促进了鲫鱼肝脏自由基的产生;鲫鱼肝脏内超氧化物歧化酶 (SOD) 与谷胱甘肽硫转移酶 (GST) 的活性受到显著诱导 ,过氧化氢酶 (CAT) 活性受到抑制,还原型谷胱甘肽 (GSH) 含量与对照组无明显差异,氧化型谷胱甘肽 (GSSG) 含量显著升高 ,丙二醛(MDA) 含量极显著增加.  相似文献   

8.
Since the radiation dose tolerance of normal tissues/organs away from the site of tumor influences the success of radiation therapy of cancer, and antioxidant status is likely to be one of the factors to determine the tolerance; the radioresponse of antioxidant enzymes has been examined in the liver as a representative distant organ in the tumorbearing mice.Swiss albino male mice (7–8 weeks old) with Ehrlich solid tumor in the thigh pad were irradiated with different doses of radiation (0–9 Gy) at a dose rate of 0.0153 Gy/s and the specific activities of enzymes involved in the free radical metabolism were determined in the liver. Except GST, the activities of SOD, DTD and Gly I as well as the GSH content were found to be higher in the liver of tumorbearing mice compared to the nontumor bearing mice. The catalase activity progressively decreased with dose in both the groups of mice. However, the activity was relatively higher in the liver of tumor bearing mice than the control. Thus, the radioresponse of antioxidant enzymes seemed to be significantly different in the liver of tumorburdened mice compared to controls. The enhanced activities might be due to relatively more damage caused by radiation. The higher levels of NO· and peroxidative damage in the liver of tumorbearing mice probably suggest this possibility. These findings of the present work might have some serious implications as the increased radiationdamage of the distant normal organs (due to tumor burden) is likely to adversely affect the therapeutic gain.  相似文献   

9.
We examined whether short-term ascorbic acid deficiency induces oxidative stress in the retinas of young guinea pigs. Four-week-old guinea pigs were given a scorbutic diet (20 g/animal/day) with and without adequate ascorbic acid (400 mg/animal/day) in drinking water for 3 weeks. The serum concentrations of the reduced form of ascorbic acid and the oxidized form of ascorbic acid in the deficient group were 14.1 and 4.1%, respectively, of those in the adequate group. The retinal contents of the reduced form of ascorbic acid and the oxidized form of ascorbic acid in the deficient group were 6.4 and 27.3%, respectively, of those in the adequate group. The retinal content of thiobarbituric acid-reactive substances, an index of lipid peroxidation, was 1.9-fold higher in the deficient group than in the adequate group. Retinal reduced glutathione and vitamin E contents in the deficient group were 70.1 and 69.4%, respectively, of those in the adequate group. This ascorbic acid deficiency did not affect serum thiobarbituric acid-reactive substances and reduced glutathione concentrations but increased serum vitamin E concentration. These results indicate that short-term ascorbic acid deficiency induces oxidative stress in the retinas of young guinea pigs without disrupting systemic antioxidant status.  相似文献   

10.
Despite the fact that the effect of B deficiency on cell metabolism has been studied extensively the mechanism by which B deficiency causes cell death has not been determined. Several authors have hypothesized that B deficiency leads to oxidative burst and hence cell death, though this has not been demonstrated experimentally. In the present work we utilize rose cell (Rosa damascena Mill cv Gloide de Guilan) suspension culture, maintained at the stationary growth phase to determine the effect of B deficiency on cell viability and a number of physiological and biochemical parameters including H2O2 production, phenolic leakage, pH of the medium, B concentration and biomass. B deficiency resulted in the death of some cells as early as 24 h following B deprivation, and continued rapidly in the following days. In B deficient cells a small oxidative burst (indicated by the production of H2O2) was observed coincident with first cell death and increasing thereafter. Increasing amounts of phenolics were observed in the culture medium of the deficient treatment indicating loss of membrane integrity, however results suggest this increase is a secondary consequence of cell death. The effect of B deficiency on the oxidative burst, together with the effect on cell viability is discussed.  相似文献   

11.
12.
The effects of lindane administration (25-60 mg kg-1 for 24 h) on hepatic oxygen consumption were studied in the isolated perfused rat liver, in the absence and presence of the iron-chelator free-radical scavenger desferrioxamine. Lindane elicits a dose-dependent enhancement of total oxygen uptake by the liver, which is largely inhibited by 0.55 mM desferrioxamine. Total desferrioxamine- sensitive oxygen consumption exhibits a maximal increase (213 per cent) at 60 mg of lindane kg-1 over control values and represents 21 per cent of the total oxygen consumption. At the different doses of lindane used, it was calculated that about 60 per cent of the total increase in oxygen uptake by the liver is accounted for by oxygen related to oxidative stress, probably utilized at different stages of the induced lipid peroxidative process.  相似文献   

13.
Activity of chloroplast-localized DNA endonuclease was observed in detached tobacco leaves that had been treated with paraquat and light The DNA endonuclease was able to cleave the chloroplast, plasmid, and single-stranded DNA, as estimated on an agarose gel. Activity was sensitive to two endonuclease inhibitors: aurintricarboxylic acid and ZnSO4. The time course for activity showed a peak 4 h after the stress treatment These results suggest that this enzyme plays a specific physiological role during oxidative stress. Probable roles for this enzyme are also discussed.  相似文献   

14.
Nephrotoxicity is an adverse side effect of methotrexate (MTX) chemotherapy. The present study verifies whether melatonin, an endogenous antioxidant prevents MTX‐induced renal damage. Adult rats were administered 7 mg/kg body weight MTX intraperitoneally for 3 days. In the melatonin pretreated rats, 40 mg/ kg body weight melatonin was administered daily intraperitoneally 1 h before the administration of MTX. The rats were killed 12 h after the final dose of MTX/vehicle. The kidneys were used for light microscopic and biochemical studies. The markers of oxidative stress were measured along with the activities of the antioxidant enzymes and myeloperoxidase activity in the kidney homogenates. Pretreatment with melatonin reduced MTX induced renal damage both histologically and biochemically as revealed by normal plasma creatinine levels. Melatonin pretreatment reduced MTX induced oxidative stress, alteration in the activity of antioxidant enzymes as well as elevation in myeloperoxidase activity. The results suggest that melatonin has the potential to reduce MTX induced oxidative stress, neutrophil infiltration as well as renal damage. As melatonin is an endogenous antioxidant and is non‐toxic even in high doses it is suggested that melatonin may be beneficial in minimizing MTX induced renal damage in humans. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Melatonin (MEL) displays antioxidant and free radical scavenger properties. In the present study, the effect of MEL on the oxidative stress induced by ochratoxin A (OTA) administration in rats was investigated. Four groups of 15 rats each were used: controls, MEL-treated rats (5 mg/kg body mass), OTA-treated rats (250 μg/kg) and MEL+OTA-treated rats. After 4 weeks of treatment, the levels of malondialdehyde (MDA), a lipid peroxidation product (LPO) were measured in serum and homogenates of liver and kidney. Also, the levels of glutathione (GSH), and activities of glutathione reductase (GR), glutathione peroxidase (GSPx), superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST) in liver and kidney were determined. In OTA-treated rats, the levels of LPO in serum and in both liver and kidney were significantly increased compared to levels in controls. Concomitantly, the levels of GSH and enzyme activities of SOD, CAT, GSPx and GR in both liver and kidney were significantly decreased in comparison with controls. In rats received MEL+OTA, the changes in the levels of LPO in serum and in liver and kidney were not statistically significant compared to controls. Concomitantly, the levels of GSPx, GR and GST activities in both liver and kidney tissues were significantly increased in comparison with controls. Similar increases in GSPx, GR and GST activities were also observed in MEL-treated rats when compared with controls. In conclusion, the oxidative stress may be a major mechanism for the toxicity of OTA. MEL has a protective effect against OTA toxicity through an inhibition of the oxidative damage and stimulation of GST activities. Thus, clinical application of melatonin as therapy should be considered in cases of ochratoxicosis.  相似文献   

16.
Brain-derived neurotrophic factor (BDNF) is considered as a putative therapeutic agent against stroke. Since BDNF role on oxidative stress is uncertain, we have studied this role in a rat brain slice ischemia model, which allows BDNF reaching the neural parenchyma. Hippocampal and cerebral cortex slices were subjected to oxygen and glucose deprivation (OGD) and then returned to normoxic conditions (reperfusion-like, RL). OGD/RL increased a number of parameters mirroring oxidative stress in the hippocampus that were reduced by the BDNF presence. BDNF also reduced the OGD/RL-increased activity in a number of antioxidant enzymes in the hippocampus but no effects were observed in the cerebral cortex. In general, we conclude that alleviation of oxidative stress by BDNF in OGD/RL-exposed slices relies on decreasing cPLA2 activity, rather than modifying antioxidant enzyme activities. Moreover, a role for the oxidative stress in the differential ischemic vulnerability of cerebral cortex and hippocampus is also supported.  相似文献   

17.
18.
At therapeutic dose, loperamide is a safe over‐the‐counter antidiarrheal drug but could induce cardiotoxic effect at a supratherapeutic dose. In this study, we use cardiac and oxidative biomarkers to evaluate loperamide‐induced cardiotoxicity in rats. Rats were orally gavaged with 1.5, 3, or 6 mg/kg body weight (BW) of loperamide hydrochloride for 7 days. The results after 7 days administration of loperamide, revealed dose‐dependent increase (P < 0.05) in aspartate aminotransferase, lactate dehydrogenase, creatine kinase‐MB, and serum concentration of cardiac troponin I, total homocysteine, and nitric oxide. A 50% decrease in antioxidant enzymes activity was observed at 6 mg/kg BW. Furthermore, malondialdehyde and fragmented DNA also increased significantly in the heart of the treatment groups. Loperamide provoked cardiotoxicity through oxidative stress, lipid peroxidation, and DNA fragmentation in rats. This study has provided a possible biochemical explanation for the reported cardiotoxicity induced by loperamide overdose.  相似文献   

19.
20.
Reactive oxygen species are toxic byproducts of aerobic respiration that are also important in mediating a diversity of cellular functions. Reactive oxygen species form an important component of plant defenses to inhibit microbial pathogens during pathogen–plant interactions. Tolerance to oxidative stress is likely to make a significant contribution to the viability and pathogenicity of plant pathogens, but the complex network of oxidative stress responses hinders identification of the genes contributing to this trait. Here, we employed a forward genetic approach to investigate the genetic architecture of oxidative stress tolerance in the fungal wheat pathogen Zymoseptoria tritici. We used quantitative trait locus (QTL) mapping of growth and melanization under axenic conditions in two cross-populations to identify genomic regions associated with tolerance to oxidative stress. We found that QTLs associated with growth under oxidative stress as well as inherent growth can affect oxidative stress tolerance, and we identified two uncharacterized genes in a major QTL associated with this trait. Our data suggest that melanization does not affect tolerance to oxidative stress, which differs from what was found for animal pathogens. This study provides a whole-genome perspective on the genetic basis of oxidative stress tolerance in a plant pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号