首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Toll-like receptors (TLR) play a key role in the recognition of pathogenic organisms. Fibronectin, an extracellular matrix protein, is considered a potent stimulator of the innate immune system through TLR4. In bacterial meningitis, several extracellular matrix proteins and bacterial compounds are elevated in the CSF. For this reason, we hypothesized that these molecules may jointly stimulate the innate immune system and increase neuronal damage in bacterial meningitis. Concentrations of fibronectin were elevated in the CSF of patients suffering from bacterial meningitis, but not in patients with multiple sclerosis, when compared with control patients without CSF abnormalities. In primary cultures of mouse microglial cells, co-administration of fibronectin at concentrations occurring in the CSF in bacterial meningitis (10 microg/mL) with defined TLR agonists [lipopolysaccharide (TLR4), the synthetic lipopeptide tripalmytoyl-cysteinyl-seryl-(lysyl)3-lysine (TLR2) and single-stranded unmethylated cytosine-guanosine oligodesoxynucleotide (TLR9)] led to an additive release of nitric oxide and tumor necrosis factor-alpha when compared with the release elicited by either compound alone. In conclusion, the inflammatory reaction to bacterial compounds can be aggravated by endogenous fibronectin at elevated levels during bacterial CNS infections. This additive or synergistic effect may contribute to neuronal damage during bacterial meningitis.  相似文献   

2.
Pneumococcal meningitis is a life-threatening disease characterized by acute purulent infection of the meninges causing neuronal injury, cortical necrosis and hippocampal apoptosis. Cholinergic neurons and their projections are extensively distributed throughout the central nervous system. The aim of this study was to assess acetylcholinesterase activity in the rat brain after pneumococcal meningitis. In the hippocampus, frontal cortex and cerebrospinal fluid, acetylcholinesterase activity was found to be increased at 6, 12, 24, 48 and 96 hr without antibiotic treatment, and at 48 and 96 hr with antibiotic treatment. Our data suggest that acetylcholinesterase activity could be related to neuronal damage induced by pneumococcal meningitis.  相似文献   

3.
Pneumococcal meningitis is associated with high morbidity and mortality rates. Brain damage caused by this disease is characterized by apoptosis in the hippocampal dentate gyrus, a morphological correlate of learning deficits in experimental paradigms. The mood stabilizer lithium has previously been found to attenuate brain damage in ischemic and inflammatory diseases of the brain. An infant rat model of pneumococcal meningitis was used to investigate the neuroprotective and neuroregenerative potential of lithium. To assess an effect on the acute disease, LiCl was administered starting five days prior to intracisternal infection with live Streptococcus pneumoniae. Clinical parameters were recorded, cerebrospinal fluid (CSF) was sampled, and the animals were sacrificed 42 hours after infection to harvest the brain and serum. Cryosections of the brains were stained for Nissl substance to quantify brain injury. Hippocampal gene expression of Bcl-2, Bax, p53, and BDNF was analyzed. Lithium concentrations were measured in serum and CSF. The effect of chronic lithium treatment on spatial memory function and cell survival in the dentate gyrus was evaluated in a Morris water maze and by quantification of BrdU incorporation after LiCl treatment during 3 weeks following infection. In the hippocampus, LiCl significantly reduced apoptosis and gene expression of Bax and p53 while it increased expression of Bcl-2. IL-10, MCP-1, and TNF were significantly increased in animals treated with LiCl compared to NaCl. Chronic LiCl treatment improved spatial memory in infected animals. The mood stabilizer lithium may thus be a therapeutic alternative to attenuate neurofunctional deficits as a result of pneumococcal meningitis.  相似文献   

4.
Neuroprotection by a caspase inhibitor in acute bacterial meningitis   总被引:14,自引:0,他引:14  
Half of the survivors of bacterial meningitis experience motor deficits, seizures, hearing loss or cognitive impairment, despite adequate bacterial killing by antibiotics. We demonstrate that the broad-spectrum caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl-ketone (z-VAD-fmk) prevented hippocampal neuronal cell death and white blood cell influx into the cerebrospinal fluid compartment in experimental pneumococcal meningitis. Hippocampal neuronal death was due to apoptosis derived from the inflammatory response in the cerebrospinal fluid. Apoptosis was induced in vitro in human neurons by inflamed cerebrospinal fluid and was blocked by z-VAD-fmk. As apoptosis drives neuronal loss in pneumococcal meningitis, caspase inhibitors might provide a new therapeutic option directed specifically at reducing brain damage.  相似文献   

5.
We previously identified CCL20 as an early chemokine in the cerebrospinal fluid (CSF) of patients with pneumococcal meningitis but its functional relevance was unknown. Here we studied the role of CCL20 and its receptor CCR6 in pneumococcal meningitis. In a prospective nationwide study, CCL20 levels were significantly elevated in the CSF of patients with pneumococcal meningitis and correlated with CSF leukocyte counts. CCR6-deficient mice with pneumococcal meningitis and WT mice with pneumococcal meningitis treated with anti-CCL20 antibodies both had reduced CSF white blood cell counts. The reduction in CSF pleocytosis was also accompanied by an increase in brain bacterial titers. Additional in vitro experiments showed direct chemoattractant activity of CCL20 for granulocytes. In summary, our results identify the CCL20-CCR6 axis as an essential component of the innate immune defense against pneumococcal meningitis, controlling granulocyte recruitment.  相似文献   

6.
Over the past six years, many new agents have become available for the treatment of bacterial central nervous system (CNS) infections. Certain principles guide the use of these agents for CNS infections: first, an antimicrobial agent must be able to penetrate the CNS to be effective; second, the CNS is a “relatively immunoincompetent site” so that an antimicrobial must achieve levels within the CNS capable of killing the offending bacterium. The lack of efficacy of chloramphenicol for meningitis due to gram-negative aerobes is probably due to its failure to achieve such killing levels, whereas the success of the newer cephalosporins, such as cefotaxime and ceftriaxone, is due to their very high killing activity against these organisms. Penicillin remains the first choice for pneumococcal and meningococcal meningitis. Ampicillin plus chloramphenicol is still recommended as initial therapy for meningitis due to Hemophilus influenzae. The newer cephalosporins are now the first choice for the treatment of meningitis due to many gram-negative bacilli. Trimethoprim-sulfamethoxazole may also be useful in some of these infections and those due to Listeria monocytogenes. In the treatment of severe CNS infections, a team approach is advised to ensure optimal therapy.  相似文献   

7.
After implementation of programmes for active immunization against Haemophilus influenzae b, Streptococcus pneumoniae and Neisseria meningitidis became the most common agents of bacterial meningitis in childhood. Over a 9-year period, children showing clinical and laboratory findings of meningitis on the basis of their positive cultures of blood or cerebro-spinal fluid (CSF) for S. pneumoniae were enrolled. Predisposing conditions, clinical and laboratory findings, and microbiological and imaging studies were considered. Meningitis-related death or neurological sequelae defined an unfavourable outcome. Sixty-four patients met the inclusion criteria. Thirty-one (48%) children had predisposing conditions to pneumococcal meningitis. Fever and neck stiffness were the main symptoms; 14 patients (22%) reported seizures before admission. Twenty-one patients required treatment in the intensive care unit (ICU). Streptococcus pneumoniae strains were penicillin susceptible in 54 cases (84%). Forty-eight children (75%) showed complete recovery. Two patients (3%) died, and 14 (22%) had sequelae. Patients with a low CSF cell count, low neutrophils, early admission to ICU or infection by penicillin-nonsusceptible strains of S. pneumoniae had an unfavourable outcome more frequently. Low blood neutrophils, low CSF cell count, early admission to ICU and infection by penicillin-nonsusceptible strains are the main factors predicting an unfavourable outcome in children with pneumococcal meningitis.  相似文献   

8.
Tuberculous meningitis is characterized by cerebral tissue destruction. Monocytes, pivotal in immune responses to Mycobacterium tuberculosis, secrete matrix metalloproteinase-9 (MMP-9), which facilitates leukocyte migration across the blood-brain barrier, but may cause cerebral injury. In vitro, human monocytic (THP-1) cells infected by live, virulent M. tuberculosis secreted MMP-9 in a dose-dependent manner. At 24 h, MMP-9 concentrations increased 10-fold to 239 +/- 75 ng/ml (p = 0.001 vs controls). MMP-9 mRNA became detectable at 24--48 h. In contrast, tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) gene expression and secretion were similar to constitutive levels from controls at 24 h and increased just 5-fold by 48 h. In vivo investigation revealed MMP-9 concentration per leukocyte in cerebrospinal fluid (CSF) from tuberculous meningitis patients (n = 23; median (range), 3.19 (0.19--31.00) ng/ml/cell) to be higher than that in bacterial (n = 12; 0.23 (0.01--18.37) ng/ml/cell) or viral meningitis (n = 20; 0.20 (0.04--31.00) ng/ml/cell; p < 0.01). TIMP-1, which was constitutively secreted into CSF, was not elevated in tuberculous compared with bacterial meningitis or controls. Thus, a phenotype in which MMP-9 activity is relatively unrestricted by TIMP-1 developed both in vitro and in vivo. This is functionally significant, since MMP-9 concentrations per CSF leukocyte (but not TIMP-1 concentrations) were elevated in fatal tuberculous meningitis and in patients with signs of cerebral tissue damage (unconsciousness, confusion, or neurological deficit; p < 0.05). However, MMP-9 activity was unrelated to the severity of systemic illness. In summary, M. tuberculosis-infected monocytic cells develop a matrix-degrading phenotype, which was observed in vivo and relates to clinical signs reflecting cerebral injury in tuberculous meningitis.  相似文献   

9.
Recently, the biased β2-adrenoceptor/β-arrestin pathway was shown to play a pivotal role in crossing of the blood brain barrier by Neisseria meningitidis. We hypothesized that genetic variation in the β2-adrenoceptor gene (ADRB2) may influence susceptibility to bacterial meningitis. In a prospective genetic association study we genotyped 542 patients with CSF culture proven community acquired bacterial meningitis and 376 matched controls for 2 functional single nucleotide polymorphisms in the β2-adrenoceptor gene (ADRB2). Furthermore, we analyzed if the use of non-selective beta-blockers, which bind to the β2-adrenoceptor, influenced the risk of bacterial meningitis. We identified a functional polymorphism in ADRB2 (rs1042714) to be associated with an increased risk for bacterial meningitis (Odds ratio [OR] 1.35, 95% confidence interval [CI] 1.04-1.76; p?=?0.026). The association remained significant after correction for age and was more prominent in patients with pneumococcal meningitis (OR 1.52, 95% CI 1.12-2.07; p?=?0.007). For meningococcal meningitis the difference in genotype frequencies between patients and controls was similar to that in pneumococcal meningitis, but this was not statistically significant (OR 1.43, 95% CI 0.60-3.38; p?=?0.72). Patients with bacterial meningitis had a lower frequency of non-selective beta-blockers use compared to the age matched population (0.9% vs. 1.8%), although this did not reach statistical significance (OR 1.96 [95% CI 0.88-4.39]; p?=?0.09). In conclusion, we identified an association between a genetic variant in the β2-adrenoceptor and increased susceptibility to bacterial meningitis. The potential benefit of pharmacological treatment targeting the β2-adrenoceptor to prevent bacterial meningitis in the general population or patients with bacteraemia should be further studied in both experimental studies and observational cohorts.  相似文献   

10.
Chemotactic activity was assayed in CSF of rabbits with pneumococcal meningitis to further characterize the inflammatory response in this infection. CSF chemotactic activity was detected in increasing levels for 72 hr after infection. Activity was stable at 56 degrees and was inactivated by agents which denature proteins. Gel filtration demonstrated two chemotactically active fractions in infected CSF with mol wts of approximately 3000 and 11,000. Bacterial products appear to account for a portion of the observed CSF chemotactic activity, but the role of host factors remains to be clarified.  相似文献   

11.
Aim of this short communication was to assess risk factors and outcome of community acquired pneumococcal meningitis and compare it to all cases of community acquired meningitis. Univariate analysis was used for comparison of 68 pneumococcal to 201 CBM within a Slovak nationwide database of CBM. Significant risk factors for pneumococcal meningitis were previous craniocerebral trauma within 7 days (39.7% vs. 14.9%, p=0.00002), splenectomy (10.3% vs. 3.5%, p=0.03) and alcohol abuse (36.8% vs. 15.4%, p=0.0001). Concerning outcome, mortality was similar (8,8% and 12,4%, NS), proportion of those with neurologic sequellae after CBM due to Str. pneumoniae was insignificantly higher (20.6% vs. 15.4%, NS) in comparison to all CBM. All but 2 strains Str. pneumoniae were susceptible to penicillin and macrolides (3.3% resistance).  相似文献   

12.
Adenosine and arachidonate (AA) fulfil opposite modulatory roles, arachidonate facilitating and adenosine inhibiting cellular responses. To understand if there is an inter-play between these two neuromodulatory systems, we investigated the effect of AA on extracellular adenosine metabolism in hippocampal nerve terminals. AA (30 microm) facilitated by 67% adenosine evoked release and by 45% ATP evoked release. These effects were not significantly modified upon blockade of lipooxygenase or cyclooxygenase and were attenuated (52-61%) by the protein kinase C inhibitor, chelerythrine (6 microm). The ecto-5'-nucleotidase inhibitor, alpha,beta-methylene ADP (100 microm), caused a larger inhibition (54%) of adenosine release in the presence of AA (30 microm) compared with control (37% inhibition) indicating that the AA-induced extracellular adenosine accumulation is mostly originated from an increased release and extracellular catabolism of ATP. This AA-induced extracellular adenosine accumulation is further potentiated by an AA-induced decrease (48%) of adenosine transporters capacity. AA (30 microm) increased by 36-42% the tonic inhibition by endogenous extracellular adenosine of adenosine A(1) receptors in the modulation of acetylcholine release and of CA1 hippocampal synaptic transmission in hippocampal slices. These results indicate that AA increases tonic adenosine modulation as a possible feedback loop to limit AA facilitation of neuronal excitability.  相似文献   

13.
Surface-exposed pneumococcal virulence proteins pneumococcal surface protein A (PspA) and pneumococcal surface protein C (PspC) play important roles in the pathogenesis of invasive pneumococcal diseases. Human neutrophils are principle antimicrobial effector cells of the innate and adaptive immune systems. In this study, we investigated the effects of PspA and PspC on the up-regulation of chemokine CXCL8 in human neutrophils, and characterized the underlying intracellular signaling pathways. Both PspA and PspC were found to induce the release of newly synthesized CXCL8. Synergistic effect was observed in the combined treatment of PspA and PspC on the release of CXCL8. Products from PspA-deficient or PspC-deficient mutant pneumococcus that did not express PspA or PspC induced significantly less release of CXCL8 than wild type pneumococcus. Both PspA and PspC could activate p38 MAPK and NF-κB pathways in neutrophils, while inhibition of NF-κB and p38 MAPK could suppress the release of CXCL8 from neutrophils induced by PspA and PspC. Together, our results demonstrated that the induction of CXCL8 in human neutrophils activated by PspA and PspC was regulated by p38 MAPK and NF-κB pathways.  相似文献   

14.
Abstract: When hippocampal cultures were deprived of glucose, massive release of lactate dehydrogenase (LDH), an indicator of neuronal death, occurred via NMDA receptor activation. Addition of pyridoxal phosphate (PLP; 1 and 10 µ M ) inhibited this LDH release in a concentration-dependent manner. Prior exposure to PLP evoked more potent inhibitory effects on LDH release compared with those treated at the onset of glucose deprivation. Furthermore, PLP inhibited the reduction of intracellular content of pyruvate induced by glucose deprivation, which was accompanied by the reversal of intracellular ATP depletion. A noteworthy elevation of extracellular glutamate in response to glucose deprivation was completely reversed by addition of PLP. Aminooxyacetic acid, a potent inhibitor of PLP-dependent enzymes, antagonized the effects of PLP on LDH release, pyruvate production, and ATP formation. These results suggest that PLP protects neurons from glucose deprivation-induced damage by enhancing the formation of energy-yielding products and relieving extracellular load of glutamate. The observed phenomena further indicate that PLP might be used prophylactically against neuronal death induced by metabolic disorders.  相似文献   

15.
Protein expression pattern in experimental pneumococcal meningitis   总被引:3,自引:0,他引:3  
In this study, we investigated cytokine expression during experimental pneumococcal meningitis. Mice were intracisternally infected with Streptococcus pneumoniae and treated with ceftriaxone starting at 24 h after infection. At different time points before and after antibiotic therapy, the cytokine expression pattern was determined in mouse brains using protein arrays. Underlining the power of this method, the meningitis-relevant cytokines interleukin-1beta (IL-1beta), IL-6, KC, macrophage inflammatory protein-2 (MIP-2), and monocyte chemoattractant protein-1 (MCP-1/CCL2) were markedly elevated in infected animals. Newly identified proteins during the acute stage of the disease (until 30 h after infection) included lymphotactin (XCL-1), MIP-1gamma (CCL9) and MCP-5 (CCL12), cytokine responsive gene- 2 (CRG-2/CXCL10) and CXCL16, and insulin-like growth factor binding protein 3 (IGFBP3). During later stages, an induction of T-cell activation-3 (TCA-3/CCL1), platelet factor-4 (PF-4/CXCL4) and stromal derived factor-1alpha (SDF-1alpha/CXCL13), and IL-4 was observed. The validity of this method was supported by an additional ELISA analysis of the expression profile of CXCL16 and IGFBP3, which was identical to that observed by protein array. In conclusion, the use of protein array technology led to an extension of the current picture of protein expression in pneumococcal meningitis. Most important, new factors that might play a role in pneumococcal meningitis were identified.  相似文献   

16.
17.
The autophagy-lysosome pathway (ALP) regulates intracellular homeostasis of the cytosolic protein SNCA/alpha-synuclein and is impaired in synucleinopathies, including Parkinson disease and dementia with Lewy bodies (DLB). Emerging evidence suggests that ALP influences SNCA release, but the underlying cellular mechanisms are not well understood. Several studies identified SNCA in exosome/extracellular vesicle (EV) fractions. EVs are generated in the multivesicular body compartment and either released upon its fusion with the plasma membrane, or cleared via the ALP. We therefore hypothesized that inhibiting ALP clearance 1) enhances SNCA release via EVs by increasing extracellular shuttling of multivesicular body contents, 2) alters EV biochemical profile, and 3) promotes SNCA cell-to-cell transfer. Indeed, ALP inhibition increased the ratio of extra- to intracellular SNCA and upregulated SNCA association with EVs in neuronal cells. Ultrastructural analysis revealed a widespread, fused multivesicular body-autophagosome compartment. Biochemical characterization revealed the presence of autophagosome-related proteins, such as LC3-II and SQSTM1. This distinct “autophagosome-exosome-like” profile was also identified in human cerebrospinal fluid (CSF) EVs. After a single intracortical injection of SNCA-containing EVs derived from CSF into mice, human SNCA colocalized with endosome and neuronal markers. Prominent SNCA immunoreactivity and a higher number of neuronal SNCA inclusions were observed after DLB patient CSF EV injections. In summary, this study provides compelling evidence that a) ALP inhibition increases SNCA in neuronal EVs, b) distinct ALP components are present in EVs, and c) CSF EVs transfer SNCA from cell to cell in vivo. Thus, macroautophagy/autophagy may regulate EV protein composition and consequently progression in synucleinopathies.  相似文献   

18.
Streptococcus pneumoniae (pneumococcus) forms organized biofilms to persist in the human nasopharynx. This persistence allows the pneumococcus to produce severe diseases such as pneumonia, otitis media, bacteremia and meningitis that kill nearly a million children every year. While bacteremia and meningitis are mediated by planktonic pneumococci, biofilm structures are present during pneumonia and otitis media. The global emergence of S. pneumoniae strains resistant to most commonly prescribed antibiotics warrants further discovery of alternative therapeutics. The present study assessed the antimicrobial potential of a plant extract, 220D-F2, rich in ellagic acid, and ellagic acid derivatives, against S. pneumoniae planktonic cells and biofilm structures. Our studies first demonstrate that, when inoculated together with planktonic cultures, 220D-F2 inhibited the formation of pneumococcal biofilms in a dose-dependent manner. As measured by bacterial counts and a LIVE/DEAD bacterial viability assay, 100 and 200 µg/ml of 220D-F2 had significant bactericidal activity against pneumococcal planktonic cultures as early as 3 h post-inoculation. Quantitative MIC’s, whether quantified by qPCR or dilution and plating, showed that 80 µg/ml of 220D-F2 completely eradicated overnight cultures of planktonic pneumococci, including antibiotic resistant strains. When preformed pneumococcal biofilms were challenged with 220D-F2, it significantly reduced the population of biofilms 3 h post-inoculation. Minimum biofilm inhibitory concentration (MBIC)50 was obtained incubating biofilms with 100 µg/ml of 220D-F2 for 3 h and 6 h of incubation. 220D-F2 also significantly reduced the population of pneumococcal biofilms formed on human pharyngeal cells. Our results demonstrate potential therapeutic applications of 220D-F2 to both kill planktonic pneumococcal cells and disrupt pneumococcal biofilms.  相似文献   

19.
MC Liu  XQ Liu  W Wang  XF Shen  HL Che  YY Guo  MG Zhao  JY Chen  WJ Luo 《PloS one》2012,7(8):e43924
Exposure of Lead (Pb), a known neurotoxicant, can impair spatial learning and memory probably via impairing the hippocampal long-term potentiation (LTP) as well as hippocampal neuronal injury. Activation of hippocampal microglia also impairs spatial learning and memory. Thus, we raised the hypothesis that activation of microglia is involved in the Pb exposure induced hippocampal LTP impairment and neuronal injury. To test this hypothesis and clarify its underlying mechanisms, we investigated the Pb-exposure on the microglia activation, cytokine release, hippocampal LTP level as well as neuronal injury in in vivo or in vitro model. The changes of these parameters were also observed after pretreatment with minocycline, a microglia activation inhibitor. Long-term low dose Pb exposure (100 ppm for 8 weeks) caused significant reduction of LTP in acute slice preparations, meanwhile, such treatment also significantly increased hippocampal microglia activation as well as neuronal injury. In vitro Pb-exposure also induced significantly increase of microglia activation, up-regulate the release of cytokines including tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β) and inducible nitric oxide synthase (iNOS) in microglia culture alone as well as neuronal injury in the co-culture with hippocampal neurons. Inhibiting the microglia activation with minocycline significantly reversed the above-mentioned Pb-exposure induced changes. Our results showed that Pb can cause microglia activation, which can up-regulate the level of IL-1β, TNF-α and iNOS, these proinflammatory factors may cause hippocampal neuronal injury as well as LTP deficits.  相似文献   

20.
Diagnosis of bacterial meningitis has long been based on classical methods of Gram stain, serological tests, and culture of cerebrospinal fluid (CSF). The performance of these methods, especially culture and direct smear is thwarted by failure to detect bacteria following administration of antimicrobial agents and reluctance to performance lumbar punctures at admission. Indeed, patients with meningitis frequently receive antibiotics orally or by injection before the diagnosis is suspected or established Thus an alternative method has become necessary to help clinicians and epidemiologists to management and control of bacterial meningitis. We evaluate the application of a polymerase chain reaction-based (PCR) assay for amplification of pneumolysin gene (ply) to diagnosis of Streptococcus pneumoniae meningitis. The PCR assay sensitivity for CSF was 96% (95% confidence interval, CI, 90-99%) compared to a sensitivity of 59% for culture (95% CI 49-69%), 66% for Gram stain (95% CI 56-74%), and 78% for latex agglutination test (95% CI 69-86%); PCR specificity was 100% (95% CI 83-100%). PCR results were available within 4 h of the start of the assay. This molecular approach proved to be reliable and useful to identify this bacterium compared with other classical laboratory methods for identification of bacterial meningitis pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号