共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
The progression of cancer is associated with tumor's ability to outgrow the existing vasculature resulting in chronic hypoxic pressure, however the molecular mechanism of cancer cell response to chronic hypoxia is poorly understood. In this study we have analyzed the reorganization of estrogen receptor (ER) signaling in breast cancer cells under chronic hypoxia and examined the role of interrelations between ER and NF-kB signaling in cell adaptation to hypoxia. Using long-term culturing of MCF-7 breast cancer cells in hypoxia-mimetic conditions (cobalt chloride) we have established a hypoxia-tolerant subline characterized by HIF-1 hyperexpression that retained the tolerance to hypoxia even when the cells were returned to normoxic conditions.The hypoxia-tolerant cells were characterized by non-affected ER signaling, irreversible suppression of NF-kB activity, and increased sensitivity to cytokine-induced apoptosis. Estradiol treatment suppressed the NF-kB activity in both parent and hypoxia-tolerant MCF-7 cells. In contrast to MCF-7 cells, the exposure of estrogen-independent MCF-7/T2 subline to chronic hypoxia was not accompanied by noticeable changes in NF-kB activity or cell sensitivity to cytokines. Taken together, the results presented demonstrate the importance of interrelations between ER and NF-kB signaling in the response of estrogen-dependent breast cancer cells to chronic hypoxia. 相似文献
5.
6.
Earley S Walker BR 《American journal of physiology. Heart and circulatory physiology》2002,283(6):H2202-H2209
Blunted agonist-induced vasoconstriction after chronic hypoxia is associated with endothelium-dependent vascular smooth muscle (VSM) cell hyperpolarization and decreased vessel-wall Ca(2+) concentration ([Ca(2+)]). We hypothesized that myogenic vasoconstriction and pressure-induced Ca(2+) influx would also be attenuated in vessels from chronically hypoxic (CH) rats. Mesenteric resistance arteries isolated from CH [barometric pressure (BP), 380 Torr for 48 h] or normoxic control (BP, 630 Torr) rats were cannulated and pressurized. VSM cell resting membrane potential was recorded at intraluminal pressures of 40-120 Torr under normoxic conditions. VSM cells in vessels from CH rats were hyperpolarized compared with control rats at all pressures. Inner diameter was maintained for vessels from control rats, whereas vessels from CH rats developed less tone as pressure was increased. Pressure-induced increases in vessel-wall [Ca(2+)] were also attenuated for arteries from CH rats. Endothelium removal restored myogenic constriction to vessels from CH rats and normalized VSM cell resting membrane potential and pressure-induced Ca(2+) responses to control levels. Myogenic constriction and pressure-induced vessel-wall [Ca(2+)] increases remained blunted in the presence of nitric oxide (NO) synthase inhibition for arteries from CH rats. We conclude that blunted myogenic reactivity after chronic hypoxia results from a non-NO, endothelium-dependent VSM cell hyperpolarizing influence. 相似文献
7.
W L Hanson D F Boggs J M Kay S E Hofmeister O Okada W W Wagner 《Journal of applied physiology》2000,88(3):981-986
The unusually muscular pulmonary arteries normally present in cattle and swine residing at low altitude are associated with a rapid development of severe pulmonary hypertension when those animals are moved to high altitude. Because these species lack collateral ventilation, they appear to have an increased dependence on hypoxic vasoconstriction to maintain normal ventilation-perfusion balance, which, in turn, maintains thickened arterial walls. The only other species known to lack collateral ventilation is the coati, which, similarly, has thick-walled pulmonary arteries. We tested the hypothesis that coatis will develop severe high-altitude pulmonary hypertension by exposing six of these animals (Nasua narica) to a simulated altitude of 4,900 m for 6 wk. After the exposure, pulmonary arterial pressures were hardly elevated, right ventricular hypertrophy was minimal, there was no muscularization of pulmonary arterioles, and, most surprising of all, there was a decrease in medial thickness of muscular pulmonary arteries. These unexpected results break a consistent cross-species pattern in which animals with thick muscular pulmonary arteries at low altitude develop severe pulmonary hypertension at high altitude. 相似文献
8.
9.
10.
11.
During sustained hypoxia the decline in ventilation that occurs in normal adult humans may be related to central accumulation of a neurochemical with net inhibitory effect. Recent investigations have shown that the putative neurotransmitter adenosine can effect a prolonged respiratory inhibition. Therefore we evaluated the possible role of adenosine in the hypoxia ventilatory decline by employing aminophylline as an adenosine blocker. We evaluated the ventilatory response to 25 min of sustained hypoxia (80% arterial O2 saturation), in eight young adults after pretreatment with either intravenous saline or aminophylline. With a mean serum aminophylline level of 15.7 mg/l, over 25 min of sustained hypoxia, peak hypoxic ventilation decreased by only 12.8% compared with 24.8% with saline, a significant difference. However, the ventilatory decline during sustained hypoxia was not abolished by the aminophylline pretreatment. Unlike the usual tidal volume-dependent attenuation of hypoxic ventilation exhibited after saline, after aminophylline the ventilatory decline was achieved predominantly through alterations in respiratory timing. Thus aminophylline pretreatment did alleviate the hypoxic ventilatory decline, although the associated alterations in breathing pattern were uncharacteristic. We conclude that adenosine may play a contributing role in the hypoxic ventilatory decline. 相似文献
12.
13.
14.
Richalet J. P.; Larmignat P.; Rathat C.; Keromes A.; Baud P.; Lhoste F. 《Journal of applied physiology》1988,65(5):1957-1961
The hypothesis of a blunted chronotropic response of cardiac beta-adrenergic receptors in altitude hypoxia was tested in nine subjects at sea level (SL) by infusion of isoproterenol. Observations were made at SL, in acute hypoxia (2 days at 4,350 m, condition H1), in more prolonged hypoxia [13 days between 850 and 4,800 m, condition H2] and in chronic hypoxia [21 days at 4,800 m, condition H3]. Resting heart rate was higher in all hypoxic conditions. Resting norepinephrine concentrations were found to be significantly higher in conditions H2 (1.64 +/- 0.59) and H3 (1.74 +/- 0.76) than at SL (0.77 +/- 0.18 ng/ml). Isoproterenol, diluted in saline, was infused at increasing doses of 0.0, 0.02, 0.04, and 0.06 micrograms.kg-1.min-1. For the highest dose, there was a significantly smaller increase in heart rate in conditions H1 (35 +/- 9), H2 (33 +/- 11), and H3 (31 +/- 11) than at SL (45 +/- 8 min-1). The increase in pulse (systolic/diastolic) pressure, considered as the vascular response to isoproterenol infusion, was smaller in condition H3 (29 +/- 16) than at SL (51 +/- 24 mmHg). There was a significant increase in the dose of isoproterenol required to increase heart rate by 25 min-1 and decrease in slope of heart rate increase vs. log(dose) relationship in conditions H2 and H3. Thus an hypoxia-related attenuated response of beta-adrenergic receptors to exogenous stimulation was found in humans.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
15.
16.
17.
The effect of ionizing radiation on the survival of bovine aortic endothelial (BAE) cells was determined by the in vitro colony formation method. The BAE cells were cultured in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% calf serum, antibiotics, and growth factors obtained from the culture of mouse S-180 cells. The cultured BAE cells were positive to the staining of antibodies against human factor VIII and formed clones in plastic culture flasks with a plating efficiency of about 11%. The survival curve of the BAE cells following an exposure to a single dose of X rays was characterized by D0 = 101 rad, Dq = 65 rad, and an extrapolation number (n) of 1.9. These parameters were not modified by the absence of growth factors at the time of irradiation. The response of BAE cells to radiation was dose-rate dependent. The split-dose studies demonstrated that the BAE cells were able to repair sublethal radiation damage within 1 h after irradiation. 相似文献
18.
19.