首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Dye pairs of contrasting colours were selected from acid dyes of varied chemical characteristics. The 44 dye pairs were investigated in a one-bath trichrome staining system in which the dye-baths were strongly acid. Dye concentrations, concentration ratios and staining times were varied for each dye pair. Thirty dye pairs stained collagen fibres distinctly different colours to muscle cytoplasm, while 14 dye pairs gave muddy, non-selective staining. Comparison of dye structures showed that in selective pairs the larger dye always stained the collagen fibres, with cytoplasm being coloured by the smaller species. With 28/30 of the selective dye pairs the differences in anionic weights of the dyes was > 200. However, in dye pairs giving non-selective staining, the anionic weights of the members of 13/14 of the dye pairs differed by < 200. As no other structural feature correlated so clearly with selectivity, it was concluded that the selectivity of one-bath trichromes is diffusion-rate controlled, involving the interaction of differentially permeable tissue sites (collagen being more permeable than muscle cytoplasm) with dyes diffusing at different rates (large dyes slower than small). In keeping with this, lengthening staining times reduced staining selectivity. The rate control mechanism suggested a rational trouble-shooting guide for one-bath trichromes, encompassing such practical factors as dye concentration, embedding medium, fixative, dye-bath pH, section thickness and staining time.  相似文献   

2.
New staining techniques continue to be introduced, and older ones continue to be used and improved. Several factors control specificity, selectivity and visibility of the end product in any procedure using dyes, fluorochromes, inorganic reagents or histochemical reactions applied to sections or similar preparations. Local concentration of the tissue target often determines the intensity of the observed color, as does the fine structure within the object being stained, which may facilitate or impede diffusion of dyes and other reagents. Several contributions to affinity control the specificity of staining. These include electrical forces, which result in accumulation of dye ions in regions of oppositely charged tissue polyions. Weaker short-range attractions (hydrogen bonding, van der Waals forces or hydrophobic bonding, depending on the solvent) hold dyes ions and histochemical end products in contact with their macromolecular substrates. Nonionic forces can also increase visibility of stained sites by causing aggregation of dye molecules. Covalent bonds between dye and tissue result in the strongest binding, such as in methods using Schiff's reagent and possibly also some mordant dyes. The rate at which a reagent gains access to or is removed from targets in a section or other specimen affect what is stained, especially when more then one dye is used, together or sequentially. Rate-controlled staining is greatly influenced by the presence and type of embedding medium, such as a resin, that infiltrates the tissue. The rates of chemical reactions are major determinants of outcome in many histochemical techniques. Selective staining of different organelles within living cells is accomplished mainly with fluorochromes and is controlled by mechanisms different from those that apply to fixed tissues. Quantitative structure-activity relations (QSAR) of such reagents can be derived from such molecular properties as hydrophilic-hydrophobic balance, extent of conjugated bond systems, acid-base properties and ionic charge. The QSAR correlates with staining of endoplasmic reticulum, lysosomes, mitochondria, DNA, or the plasma membranes of living cells.  相似文献   

3.
T Müller 《Acta anatomica》1992,144(1):39-44
Mouse brains were stained supravitally with methylene blue and studied in paraffin sections by light microscopy. In the perikarya, the dye was found to bind primarily to the nuclei; only slight staining of the cytoplasm was observed. Dye accumulations within nerve fibers were found in the nodes of Ranvier and in the varicosities of the unmyelinated endings. Specific dye binding in dendrites corresponded mainly to beads and spines. The accumulation sites in terminal neuronal processes appeared to be closely related to the plasma membrane. These morphological data would explain the neurophysiologically proven interaction of the dye with calcium-binding sites in membranes.  相似文献   

4.
It has been proposed to use trichrome staining of histological sections for the detection of connective tissue fiber and sites for amyloid localization, as well as for increasing color contrast. After incubation in acidin–pepsin solution, sections are dewaxed and successively stained with picrofuchsin according to van Gieson, together with nuclei counterstain with hematoxylin, Congo red, and picroindigocarmine. As a result, the amyloid bound with collagen fibers was stained brick-red, collagen and reticular fibers not bound with amyloid was stained blue-green, and cytoplasm of cells not containing amyloid was stained yellow. Trichrome staining of organs affected by amyloidosis is more informative for the analysis of organs than Congo red stain.  相似文献   

5.
Summary The mechanism of gelatine staining with four selected fluorone derivative dyes (eosin y, ethyl eosin, methyl eosin, uranin) was investigated. Gelatine films were stained in dye-buffer-ethanol solutions at varying pH and in the presence of NaCl and urea. Dye binding was recorded spectrophotometrically. Ionization constants of auxochromic phenolic groups were determined from pH-absorbance curves of dye-buffer-ethanol solutions. Dyebinding was greatest at pH below pKOH and decreased with increasing pH. The addition of NaCl reduced dye binding slightly below pKOH but markedly above pKOH. The addition of 8 M urea decreased dyebinding regardless of pH. Comparing the pH dependence of dyebinding for eosin y and esterified eosins with ionization constants revealed that ionic bonding is unlikely to occur at the carboxyl group as well as at the phenolic group. Dye binding is intimately related to the presence of Br-groups. These results are discussed in conjunction with the functional structure of the dye ions and current concepts of dyebinding mechanisms.  相似文献   

6.
To observe the dynamic behavior of callose of microspore mother cells during meiosis, we developed a convenient, rapid and efficient staining method using an improved carbol fuchsin/aniline blue solution. The stained microspore mother cells during meiosis showed yellowish green callose, red cytoplasm and dark red chromosomes when excited with blue light, which produced a contrasting image with a three-dimensional effect. When stained with only improved carbol fuchsin solution, the cells had red cytoplasm and chromosomes when excited with green light. The improved carbol fuchsin solution can be used to replace other more expensive DNA-specific dyes, such as DAPI and H33258, to reduce experimental costs.  相似文献   

7.
To observe the dynamic behavior of callose of microspore mother cells during meiosis, we developed a convenient, rapid and efficient staining method using an improved carbol fuchsin/aniline blue solution. The stained microspore mother cells during meiosis showed yellowish green callose, red cytoplasm and dark red chromosomes when excited with blue light, which produced a contrasting image with a three-dimensional effect. When stained with only improved carbol fuchsin solution, the cells had red cytoplasm and chromosomes when excited with green light. The improved carbol fuchsin solution can be used to replace other more expensive DNA-specific dyes, such as DAPI and H33258, to reduce experimental costs.  相似文献   

8.
Aldehyde fuchsin is a standard stain for the secretion granules of pancreatic B cells. The participation of either insulin or proinsulin in aldehyde fuchsin staining is in dispute. There is some evidence that permanganate oxidized insulin is stained by aldehyde fuchsin. Aldehyde fuchsin staining of unoxidized insulin has not been investigated adequately despite excellent staining results with tissue sections. Unoxidized insulin and proinsulin suspended by electrophoresis in polyacrylamide gels were fixed with Bouin's fluid and placed in aldehyde fuchsin for one hour. Because the unoxidized proteins were not stained by aldehyde fuchsin, it was concluded that neither insulin or proinsulin are responsible for the intense aldehyde fuchsin staining of unoxidized pancreatic B cell granules in tissue sections. A series of controlled experiments was undertaken to test the effects of fixatives, oxidation and destaining procedures on aldehyde fuchsin staining of insulin, proinsulin and other proteins immobilized in polyacrylamide gels. It was demonstrated that only oxidized proteins were stained by aldehyde fuchsin and that cystine content of the proteins had no apparent relation to aldehyde fuchsin staining. It was concluded that neither insulin nor proinsulin is likely to be responsible for the intense aldehyde fuchsin staining of unoxidized pancreatic B cell granules in tissue sections.  相似文献   

9.
Summary Anionic dye connective tissue procedures were performed by staining for 5 min and 24 h with (a) 0.00018m and 0.0018m solutions of 28 dyes, and 0.018m solutions of 21 dyes in saturated picric acid (SPA), and (b) 0.0018m and 0.018m solutions of 20 dyes in 1% (w/v) phosphomolybdic acid (PMA). The staining obtained with dyes in SPA was classified as selective (no cytoplasmic staining), moderately selective (traces of cytoplasmic staining) and non-selective (all other staining patterns). The staining of collagen and cytoplasm with dyes in PMA was separately classified on a scale of 1–5 (1 = no staining, 5 = maximum staining). The selectivity of the staining obtained with SPA with solutions of dyes at concentrations of 0.00018m and 0.0018m, and both staining times, was correlated (p < 0.001) with an empirical sulphonic acid constant (SAC) defined as the (number of dye sulphonic acid groups/dye molecular weight) × 103. Correlation with molecular weight was poor and was significant only when staining was performed with 0.00018m dye solutions for 24 h. The dyes were divisible into three groups: group 1 (selectivity independent, or almost independent of staining time), group 2 (selective to moderately selective when staining was performed for 5 min), and group 3 (non-selective). The SAC of the group 1 dyes differed significantly from those of the group 2 and 3 dyes. Selectivity was essentially lost at dye concentrations of 0.018m. The staining with acidic dyes (no amines or substituted amines) in PMA differed significantly (p < 0.001) from that obtained with amphoteric dyes (containing basic substituents). In general, acidic dyes stained cytoplasm. Amphoteric dyes with the exception of indigocarmine stained collagen. However, most of these dyes also stained cytoplasm. In contrast to the results obtained with dyes in SPA, selectivity correlated strongly with molecular weight and only poorly with the SAC. Staining time and dye concentration affected selectivity only when the acidic dyes were used for 5 min at concentrations of 0.0018m and 0.018m. The data obtained do not permit a clear distinction between the rate control and chemical affinity models for the mechanism of staining with anionic dyes. However, it seems possible that different groups of dyes stain by different mechanisms. Part of this work was performed by M.I., S.N., M.J. and L.M. in partial fulfilment of the requirements for the completion of Pathology 438. A partial account of this work was presented at the annual convention of the British Columbia Society of Medical Technology, Victoria, British Columbia, October 1991.  相似文献   

10.
Biological staining is to a large degree explainable based on the principles governing folding and aggregation of macromolecules in aqueous solution. Most macromolecules are polyions, which, except for heteropolysaccharides, have a large proportion of nonpolar or only slightly polar residues. Because they are amphiphilic, they react in water by a complex set of hydrophobic interactions involving charged residues, nonpolar residues and water molecules. The hydrophobic interactions lead to complex folding systems or micelle-like structures. Dyes are amphiphilic molecules with a tendency to form micelles, but with limitations due to geometric constraints and charge repulsion. Macromolecules and dyes react with each other in aqueous solution following the same principles as for the structural organization of macromolecules, as in protein folding for example. Dye binding requires near contact between nonpolar groups in both the dye and macromolecule, and this is accomplished by choosing a pH at which the dye and macromolecule have opposite net charges. Charge attraction is insufficient for binding in most cases, but it is directive because it determines which macromolecules a given dye ion is able to contact. These considerations apply to the staining of globular (cytoplasmic) proteins and to nucleic acid staining. The staining mechanism is by hydrophobic interactions. Above approximately pH 3.5, DNA may also bind dyes by hydrophobic intercalation between the bases of the double helix; at lower pH the double helix opens and dye binding is as for RNA and globular proteins. Heteroglycans (mucins) have virtually no nonpolar groups, so nonpolar interactions are restricted to the dye molecules. Metachromatic staining of heteroglycans is due to hydrophobic bonding or micelle formation between the monovalent planar dye molecules aided by charge neutralization by the negatively charged heteroglycans. Alternatively, as the charge attraction increases with the number of closely placed charges, acidic heteroglycans may be stained by a polycation such as alcian blue or colloidal iron. For elastic fiber and collagen staining, actual hydrophobic interactions are less important and hydrogen bonding and simple nonpolar interactions play a major role. These macromolecules may therefore be stained using a nonaqueous alcoholic solution.  相似文献   

11.
Biological staining is to a large degree explainable based on the principles governing folding and aggregation of macromolecules in aqueous solution. Most macromolecules are polyions, which, except for heteropolysaccharides, have a large proportion of nonpolar or only slightly polar residues. Because they are amphiphilic, they react in water by a complex set of hydrophobic interactions involving charged residues, nonpolar residues and water molecules. The hydrophobic interactions lead to complex folding systems or micelle-like structures. Dyes are amphiphilic molecules with a tendency to form micelles, but with limitations due to geometric constraints and charge repulsion. Macromolecules and dyes react with each other in aqueous solution following the same principles as for the structural organization of macromolecules, as in protein folding for example. Dye binding requires near contact between nonpolar groups in both the dye and macromolecule, and this is accomplished by choosing a pH at which the dye and macromolecule have opposite net charges. Charge attraction is insufficient for binding in most cases, but it is directive because it determines which macromolecules a given dye ion is able to contact. These considerations apply to the staining of globular (cytoplasmic) proteins and to nucleic acid staining. The staining mechanism is by hydrophobic interactions. Above approximately pH 3.5, DNA may also bind dyes by hydrophobic intercalation between the bases of the double helix; at lower pH the double helix opens and dye binding is as for RNA and globular proteins. Heteroglycans (mucins) have virtually no nonpolar groups, so nonpolar interactions are restricted to the dye molecules. Metachromatic staining of heteroglycans is due to hydrophobic bonding or micelle formation between the monovalent planar dye molecules aided by charge neutralization by the negatively charged heteroglycans. Alternatively, as the charge attraction increases with the number of closely placed charges, acidic heteroglycans may be stained by a polycation such as alcian blue or colloidal iron. For elastic fiber and collagen staining, actual hydrophobic interactions are less important and hydrogen bonding and simple nonpolar interactions play a major role. These macromolecules may therefore be stained using a nonaqueous alcoholic solution.  相似文献   

12.
The results of experiments on the specificity of the Feulgen reaction for thymonucleic acid do not substantiate the observations of Carr. The staining is not localized in the nucleus because of the destruction of cytoplasmic constituents following acid hydrolysis or because of the absorbing power of chromatin, since the cytoplasm and nucleolus can still be stained by numerous dyes. The effects of factors such as the acid hydrolysis and sulfurous acid washing baths upon the cytologic distribution of dye were studied on tissues stained with (1) fuchsin-sulfurous-acid (Feulgen) reagent, (2) fuchsin-sulfurous-acid reagent colorized by the addition of formaldehyde, (3) basic fuchsin in one-tenth normal HCl, and (4) basic fuchsin in distilled water. Under comparable conditions, important differences between these stains were found in the effects of preliminary hydrolysis; rapidity of staining and destaining; extractability of dye from tissues by water, alcohol, and sulfurous acid solution; rate of fading from exposure to light; localization of stain in tissues; and differences in hue. After treating tissues with desoxyribonuclease, an enzyme which acts only upon thymonucleic acid, cells do not stain with the Feulgen technic. Following removal of nucleic acid from chromatin by hydrolysis, attempts to demonstrate an absorption of thymonucleic acid upon the residual nuclear protein were unsuccessful.

The evidence for and against the specificity is discussed. In agreement with most other investigators, on the basis of the evidence in the literature as well as these experiments, it is concluded that when properly controlled the Feulgen reaction is relatively specific for thymonucleic acid.  相似文献   

13.
A staining system is described in which each stage forms a separate module or unit. All reagents, concentrations of dye, ratios of phosphotungstic acid to dye, pH values, temperature and staining times are standardized and only aqueous solutions used. The technic uses equal strength solutions of orange G, acid fuchsin and methyl (or aniline) blue, in ascending order of molecular size, at pH 2.5 (range: 2.3 to 2.7). Phosphotungstic acid is incorporated in the dyebaths, not used separately, and the combination of this with ferric alum hematoxylin (Lillie's by preference) and either naphthol yellow S or picric acid as a primer, enables fibrin and cytoplasmic components to be demonstrated vividly, with other tissues shown in clear contrasting colors. Erythrocytes are yellow, fibrin red and collagen blue. The system permits substitution of dyes, lending itself to both manual and computer recording and analysis, helped by a notation system for identifying variants. Many of the factors are variable at will. The system aids research into the mechanism of polychrome staining, and, by extrapolation, into the mechanism of action of other stains. Two manually or machine usable progressive polychrome technics intended for routine use are described. They identify tissue components consistently, complementing the standard hematoxylin and eosin stain, and deserve equal attention during reporting. Variants may be used for one-minute one-stage staining of frozen sections, or to give strong colors with 2 millimicrons acrylic sections.  相似文献   

14.
Metachromasy: An Experimental and Theoretical Reevaluation   总被引:7,自引:2,他引:5       下载免费PDF全文
Non-chromotropic substances such as fibrin and gelatin and most tissue and cellular structures stain orthochromatically with internal dye concentrations of such metachromatic dyes as methylene blue and toluidine blue which, if in solution, would be metachromatic. Therefore, at ordinary levels of staining these substances depress the natural tendency of these dyes to change color. However, at elevated levels of dye-binding metachromasy eventually occurs. This phenomenon is explained on the basis of the distribution of dye-binding sites. In these substrates, by contrast with chromotropic substances, many binding sites are too far removed for dye interaction, consequently the interaction frequency can become high enough to produce a color change only as saturation of the available sites is approached. It is also shown that the destruction of color is a characteristic of metachromasy and that water molecules intercalated between approximated dye ions are responsible for the loss and change of color. A concept of metachromasy is proposed in which the interaction between water molecules and suitably approximated dye ions plays an essential role. The experimental studies are described against a background of the history and evolution of ideas on metachromasy. The literature is reviewed and reassessed particularly from the physicochemical viewpoint.  相似文献   

15.
Non-chromotropic substances such as fibrin and gelatin and most tissue and cellular structures stain orthochromatically with internal dye concentrations of such metachromatic dyes as methylene blue and toluidine blue which, if in solution, would be metachromatic. Therefore, at ordinary levels of staining these substances depress the natural tendency of these dyes to change color. However, at elevated levels of dye-binding metachromasy eventually occurs. This phenomenon is explained on the basis of the distribution of dye-binding sites. In these substrates, by contrast with chromotropic substances, many binding sites are too far removed for dye interaction, consequently the interaction frequency can become high enough to produce a color change only as saturation of the available sites is approached. It is also shown that the destruction of color is a characteristic of metachromasy and that water molecules intercalated between approximated dye ions are responsible for the loss and change of color. A concept of metachromasy is proposed in which the interaction between water molecules and suitably approximated dye ions plays an essential role. The experimental studies are described against a background of the history and evolution of ideas on metachromasy. The literature is reviewed and reassessed particularly from the physicochemical viewpoint.  相似文献   

16.
Synopsis An investigation of the role of phosphotungstic and phosphomolybdic acids in Mallory-like trichrome methods showed unexpectedly that, rather than acting as mordants to anionic dyes, these polyacids selectively blocked staining of all tissue components other than connective tissue fibres to Aniline Blue and other similar fibrereactive dyes. Connective tissue components were found to contain residues resembling histidine that are easily accessible to anionic dyes. Blocking towards typical anionic dyes for demonstrating plasma proteins, such as Biebrich Scarlet, was also demonstrated but was less complete. The blockade of both types of dye was labile if the staining times were extended; plasma dyes were more sensitive than fibre dyes in this respect. Histochemical reactions for tyrosine residues were blocked. In connective tissue, phosphotungstic acid did not block histidine residues demonstrable by the coupled tetrazonium reaction with previous iodination. Thus it is postulated that differential trichrome staining occurs by binding of Aniline Blue to basic residues in the connective tissue not blocked by phosphotungstic acid and subsequent replacement of the blocking agent by an anionic dye. The binding of phosphotungstic acid to both epithelium and connective tissue was demonstrated by the quenching of autofluorescence in these regions and by the reduction of the bound PTA to blue coloured products with titanium trichloride.  相似文献   

17.
Four fuchsin analogues (Pararosaniline, Rosaniline. Magenta II and New Fuchsin) usually found in Basic Fuchsin have been applied as chemically pure dyes to the Feulgen-technique. Total nuclear absorption and wavelength of the absorption maximum were measured by microspectrophotometry in Feulgen stained cytological and plastic embedded histological liver samples, and in lymphocyte nuclei in human peripheral blood smears; absorption spectra of Feulgen stained DNA-polyacrylamide films were determined by spectrophotometry. The grey value distribution of tetraploid liver cell nuclei was calculated with an image analyzer. The staining characteristics of the pure dyes were compared to commercial fuchsin samples from various suppliers. Reverse phase thin layer chromatography was used for characterization and qualitative separation of commercial batches. Pure fuchsin analogues were all equally suitable for Feulgen staining: with respect of staining intensity all pure fuchsin dyes gave nearly identical results with a bathochromic shift of the absorption maximum from Pararosaniline to New Fuchsin of about 8 microns. Differences in staining results observed among the commercial dyes were due to varying dye content, contamination with an acridine-like fluorescent compound or simply mislabelling of samples. Pure Pararosaniline is recommended for a standard Feulgen technique.  相似文献   

18.
A polyacid-dependent dichrome has been devised which will differentiate epithelial from mesenchymal cells in young dividing primary cultures. Epithelial cells and colonies and nuclei are stained with metanil yellow, the stain is fixed and differentiated with phosphotungstic acid, and the mesenchymal elements are stained with toluidine blue. Several other dyes are tested for substitution in this method. Biebrich scarlet and aniline blue could be substituted for the metanil yellow; Bismarck brown T, Janus green B, crystal violet, and neutral red could be substituted for the basic dye.  相似文献   

19.
Various acid dyes prove satisfactory for the routine staining of bacteria. Those used are acid fuchsin, anilin blue w. s., fast acid blue R, fast green FCF, light green, orseilline BB, erythrosin, phloxine and rose bengal. Acid fuchsin, fast green, anilin blue, and orseilline are especially recommended. Phenolic solutions of the dyes, acidified with acetic acid, with the addition of ferric chloride to those containing acid fuchsin, anilin blue, fast green or light green, are used. Procedures are given in detail for staining or demonstrating vegetative cells, resting and germinating spores, capsules, sheaths and glycogen in bacteria; germinating and conjugating spores of yeast; and for counterstaining after acid fast or Gram staining. The principal advantages of using acid dyes are better differentiation, and less tendency for slime amd debris to take the dye.  相似文献   

20.
Summary Four fuchsin analogues (Pararosaniline, Rosaniline, Magenta II and New Fuchsin) usually found in Basic Fuchsin have been applied as chemically pure dyes to the Feulgen-technique. Total nuclear absorption and wavelength of the absorption maximum were measured by microspectrophotometry in Feulgen stained cytological and plastic embedded histological liver samples, and in lymphocyte nuclei in human peripheral blood smears; absorption spectra of Feulgen stained DNA-polyacrylamide films were determined by spectrophotometry. The grey value distribution of tetraploid liver cell nuclei was calculated with an image analyzer. The staining characteristics of the pure dyes were compared to commercial fuchsin samples from various suppliers. Reverse phase thin layer chromatography was used for characterization and qualitative separation of commercial batches.Pure fuchsin analogues were all equally suitable for Feulgen staining: with respect of staining intensity all pure fuchsin dyes gave nearly identical results with a bathochromic shift of the absorption maximum from Pararosaniline to New Fuchsin of about 8 m.Differences in staining results observed among the commercial dyes were due to varying dye content, contamination with an acridine-like fluorescent compound or simply mislabelling of samples. Pure Pararosaniline is recommended for a standard Feulgen technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号