首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organ printing: fiction or science   总被引:3,自引:0,他引:3  
Jakab K  Neagu A  Mironov V  Forgacs G 《Biorheology》2004,41(3-4):371-375
Aggregates of living cells (i.e. model tissue fragments) under appropriate conditions fuse like liquid drops. According to Steinberg's differential adhesion hypothesis (DAH), this may be understood by assuming that cells are motile and tissues made of such cells possess an effective surface tension. Here we show that based on these properties three-dimensional cellular structures of prescribed shape can be constructed by a novel method: cell aggregate printing. Spherical aggregates of similar size made of cells with known adhesive properties were prepared. Aggregates were embedded into biocompatible gels. When the cellular and gel properties, as well as the symmetry of the initial configuration were appropriately adjusted the contiguous aggregates fused into ring-like organ structures. To elucidate the driving force and optimal conditions for this pattern formation, Monte Carlo simulations based on a DAH motivated model were performed. The simulations reproduced the experimentally observed cellular arrangements and revealed that the control parameter of pattern evolution is the gel-tissue interfacial tension, an experimentally accessible parameter.  相似文献   

2.
The beauty and diversity of cell shapes have always fascinated both biologists and physicists. In the early 1950, J. Holtfreter coined the term "tissue affinities" to describe the forces behind the spontaneous shaping of groups of cells. These tissue affinites were later on related to adhesive properties of cell membranes. In the 1960, Malcom Steinberg proposed the differential adhesion hypothesis (DAH) as a physical explanation of the liquid-like behaviour of tissues and cells during morphogenesis. However, the link between the cellular properties of adhesion molecules, such as the cadherins, and the physical rules that shape the body, has remained unclear. Recent in vitro studies have now shown that surface tensions, which drive the spontaneous liquid-like behaviour of cell rearrangements, are a direct and linear function of cadherin expression levels. Tissue surface tensions thus arise from differences in intercellular adhesiveness, which validates the DAH in vitro. The DAH was also vindicated in vivo by stunning experiments in Drosophila. The powerful genetic tools available in Drosophila allow to manipulate the levels and patterns of expression of several cadherins and to create artificially differences in intercellular adhesiveness. The results showed that simple laws of thermodynamics, as well as quantitative and qualitative differences in cadherins expression were sufficient to explain processes as complex as the establishment of the anterior-posterior axis and the formation of the compound eye in Drosophila.  相似文献   

3.
The mechanics of cell sorting and envelopment   总被引:3,自引:0,他引:3  
Aggregates of embryonic cells undergo a variety of intriguing processes including sorting by histological type and envelopment of cell masses of one type by another. It has long been held that these processes were driven by differential adhesions, as embodied in the famous differential adhesion hypothesis (DAH). Here, we use analytical mechanics to investigate the forces that are generated by various sub-cellular structures including microfilaments, cell membranes and their associated proteins, and by sources of cell-cell adhesions. We consider how these forces cause the triple junctions between cells to move, and how these motions ultimately give rise to phenomena such as cell sorting and tissue envelopment. The analyses show that, contrary to the widely accepted DAH, differential adhesions alone are unable to drive sorting and envelopment. They show, instead, that these phenomena are driven by the combined effect of several force generators, as embodied in an equivalent surface or interfacial tension. These unconventional findings follow directly from the relevant surface physics and mechanics, and are consistent with well-known cell sorting and envelopment experiments, and with recent computer simulations.  相似文献   

4.
The role of the Campylobacter jejuni flagella in adhesion to, and penetration into, eukaryotic cells was investigated. We used homologous recombination to inactivate the two flagellin genes flaA and flaB of C. jejuni, respectively. Mutants in which flaB but not flaA is inactivated remain motile. In contrast a defective flaA gene leads to immotile bacteria. Invasion studies showed that mutants without motile flagella have lost their potential to adhere to, and penetrate into, human intestinal cells in vitro. Invasive properties could be partially restored by centrifugation of the mutants onto the tissue culture cells, indicating that motility is a major, but not the only, factor involved in invasion.  相似文献   

5.
Proteomic profiling has emerged as a useful tool for identifying tissue alterations in disease states including malignant transformation. The aim of this study was to reveal expression profiles associated with the highly motile/invasive ovarian cancer cell phenotype. Six ovarian cancer cell lines were subjected to proteomic characterization using multidimensional protein identification technology (MudPIT), and evaluated for their motile/invasive behavior, so that these parameters could be compared. Within whole cell extracts of the ovarian cancer cells, MudPIT identified proteins that mapped to 2245 unique genes. Western blot analysis for selected proteins confirmed the expression profiles revealed by MudPIT, demonstrating the fidelity of this high-throughput analysis. Unsupervised cluster analysis partitioned the cell lines in a manner that reflected their motile/invasive capacity. A comparison of protein expression profiles between cell lines of high (group 1) versus low (group 2) motile/invasive capacity revealed 300 proteins that were differentially expressed, of which 196 proteins were significantly upregulated in group 1. Protein network and KEGG pathway analysis indicated a functional interplay between proteins up-regulated in group 1 cells, with increased expression of several key members of the actin cytoskeleton, extracellular matrix (ECM) and focal adhesion pathways. These proteomic expression profiles can be utilized to distinguish highly motile, aggressive ovarian cancer cells from lesser invasive ones, and could prove to be essential in the development of more effective strategies that target pivotal cell signaling pathways used by cancer cells during local invasion and distant metastasis.  相似文献   

6.
The differential adhesion hypothesis (DAH), advanced in the 1960s, proposed that the liquid-like tissue-spreading and cell segregation phenomena of development arise from tissue surface tensions that in turn arise from differences in intercellular adhesiveness. Our earlier measurements of liquid-like cell aggregate surface tensions have shown that, without exception, a cell aggregate of lower surface tension tends to envelop one of higher surface tension to which it adheres. We here measure the surface tensions of L cell aggregates transfected to express N-, P- or E-cadherin in varied, measured amounts. We report that in these aggregates, in which cadherins are essentially the only cell-cell adhesion molecules, the aggregate surface tensions are a direct, linear function of cadherin expression level. Taken together with our earlier results, the conclusion follows that the liquid-like morphogenetic cell and tissue rearrangements of cell sorting, tissue spreading and segregation represent self-assembly processes guided by the diminution of adhesive-free energy as cells tend to maximize their mutual binding. This conclusion relates to the physics governing these morphogenetic phenomena and applies independently of issues such as the specificities of intercellular adhesives.  相似文献   

7.
Mali P  Wirtz D  Searson PC 《Biophysical journal》2010,99(11):3526-3534
Upon cortical retraction in mitosis, mammalian cells have a dramatically decreased physical association with their environment. Hence, mechanisms that prevent mitotic detachment and ensure appropriate positioning of the resulting daughter cells are critical for effective tissue morphogenesis and repair, and are the subject of this study. We find that, unlike low-motility cells, highly motile cells spread isotropically upon division and do not typically reoccupy their mother-cell footprint, and often even disseminate their mitotic cells. To elucidate these different motility-based phenotypes, we investigated their partial recapitulation and rescue using defined molecular perturbations. We show that activated RhoA is localized at the mitotic cell cortex, and Rho-associated kinase inhibition increases the degree of reoccupation of the mother-cell outline in highly motile cells. Conversely, we show that induction of motility in low-motility cells by RasV12 overexpression results in increased isotropic daughter-cell spreading. We thus propose that a balance between cortical retraction forces, which depend in part on RhoA activation, and substrate adhesion forces, which diminish with increasing motility rates, governs the integrity of mitotic actin retraction fibers and influences subsequent daughter-cell spreading. This balance of forces during mitosis has implications for cancer metastasis.  相似文献   

8.
An epithelial–mesenchymal transformation (EMT) involves alterations in cell–cell and cell–matrix adhesion, the detachment of epithelial cells from their neighbors, the degradation of the basal lamina and acquisition of mesenchymal phenotype. Here we present Monte Carlo simulations for a specific EMT in early heart development: the formation of cardiac cushions. Cell rearrangements are described in accordance with Steinberg's differential adhesion hypothesis, which states that cells possess a type-dependent adhesion apparatus and are sufficiently motile to give rise to the tissue conformation with the largest number of strong bonds. We also implement epithelial and mesenchymal cell proliferation, cell type change and extracellular matrix production by mesenchymal cells. Our results show that an EMT is promoted more efficiently by an increase in cell–substrate adhesion than by a decrease in cell–cell adhesion. In addition to cushion tissue formation, the model also accounts for the phenomena of matrix invasion and mesenchymal condensation. We conclude that in order to maintain epithelial integrity during EMT the number of epithelial cells must increase at a controlled rate. Our model predictions are in qualitative agreement with available experimental data.  相似文献   

9.
Adhesion of Salmonella dublin to HEp2 epithelial cells   总被引:1,自引:0,他引:1  
Two strains of Salmonella dublin , grown serially in brain heart infusion broth, were motile and produced mannose sensitive (MS) but not mannose resistant (MR) haemagglutinins; grown on phosphate buffered agar, the strains were poorly motile and phenotypically MSHA- MRHA +. In adhesion tests with HEp2 epithelial cells, broth grown bacteria that were motile and MSHA+ MRHA- adhered better than agar grown bacteria that were poorly motile and MSHA- MRHA+. Thus, in adhesion tests with HEp2 epithelial cells, strains of S. dublin behaved like S. typhimurium strains in that their HEp2 cell adhesiveness was associated with motility and production of MSHA.  相似文献   

10.
Cell invasion requires cooperation between adhesion receptors and matrix metalloproteinases (MMPs). Membrane type (MT)-MMPs have been thought to be primarily involved in the breakdown of the extracellular matrix. Our report presents evidence that MT-MMPs in addition to the breakdown of the extracellular matrix may be engaged in proteolysis of adhesion receptors on tumor cell surfaces. Overexpression of MT1-MMP by glioma and fibrosarcoma cells led to proteolytic degradation of cell surface tissue transglutaminase (tTG) at the leading edge of motile cancer cells. In agreement, structurally related MT1-MMP, MT2-MMP, and MT3-MMP but not evolutionary distant MT4-MMP efficiently degraded purified tTG in vitro. Because cell surface tTG represents a ubiquitously expressed, potent integrin-binding adhesion coreceptor involved in the binding of cells to fibronectin (Fn), the proteolytic degradation of tTG by MT1-MMP specifically suppressed cell adhesion and migration on Fn. Reciprocally, Fn in vitro and in cultured cells protected its surface receptor, tTG, from proteolysis by MT1-MMP, thereby supporting cell adhesion and locomotion. In contrast, the proteolytic degradation of tTG stimulated migration of cells on collagen matrices. Together, our observations suggest both an important coreceptor role for cell surface tTG and a novel regulatory function of membrane-anchored MMPs in cancer cell adhesion and locomotion. Proteolysis of adhesion proteins colocalized with MT-MMPs at discrete regions on the surface of migrating tumor cells might be controlled by composition of the surrounding ECM.  相似文献   

11.
The distribution of a hyaluronate-binding (HABP) and rhodamine B-isothiocyanate (RITC)-labeled hyaluronate (HA) were studied on both actively motile and stationary chick heart fibroblasts to assess the relationship of these molecules to each other, to other extracellular matrix molecules, to membrane protrusions and to adhesion sites. RITC-HA and HABP, detected by indirect immunofluorescence, were concentrated in the perinuclear region, the leading lamella and retraction processes of actively motile cells, although RITC-HA also occurred diffusely over the rest of the cell body. Double immunofluorescence confirmed that HA and HABP co-localized in the former three regions, suggesting that, at these locations, the HABP may act as a cell surface-binding site for HA. With increasing culture confluency and consequent slowing of fibroblast motility, the localization of both polymers changed to a uniform and diffuse distribution over the cell body and processes. On actively motile cells, RITC-HA and HABP did not co-distribute with fibronectin, heparan sulfate proteoglycan or laminin. Areas coated with RITC-HA and HABP often contained specialized adhesion sites as determined by interference reflection microscopy (IRM) but neither polymer appeared to particularly localize to adhesion sites. However, the occurrence of RITC-HA and HABP in the leading lamellae of motile cells consistently coincided with ruffling activity. These results are discussed with respect to a possible instructive role of HA in cell motility.  相似文献   

12.
Polyelectrolyte multilayer films were employed to support attachment of cultured rat aortic smooth muscle A7r5 cells. Like smooth muscle cells in vivo, cultured A7r5 cells are capable of converting between a nonmotile "contractile" phenotype and a motile "synthetic" phenotype. Polyelectrolyte films were designed to examine the effect of surface charge and hydrophobicity on cell adhesion, morphology, and motility. The hydrophobic nature and surface charge of different polyelectrolyte films significantly affected A7r5 cell attachment and spreading. In general, hydrophobic polyelectrolyte film surfaces, regardless of formal charge, were found to be more cytophilic than hydrophilic surfaces. On the most hydrophobic surfaces, the A7r5 cells adhered, spread, and exhibited little indication of motility, whereas on the most hydrophilic surfaces, the cells adhered poorly if at all and when present on the surface displayed characteristics of being highly motile. The two surfaces that minimized cell adhesion consisted of two varieties of a diblock copolymer containing hydrophilic poly(ethylene oxide) and a copolymer bearing a zwitterionic group AEDAPS, (3-[2-(acrylamido)-ethyldimethyl ammonio] propane sulfonate). Increasing the proportion of AEDAPS in the copolymer decreased the adhesion of cells to the surface. Cells presented with micropatterns of cytophilic and cytophobic surfaces generated by polymer-on-polymer stamping displayed a surface-dependent cytoskeletal organization and a dramatic preference for adhesion to, and spreading on, the cytophilic surface, demonstrating the utility of polyelectrolyte films in manipulating smooth muscle cell adhesion and behavior.  相似文献   

13.
A toluene-degrading bacterium, Acinetobacter sp. Tol 5, shows noteworthy adhesiveness mediated by two types of cell appendages. In this study, we obtained a less-adhesive mutant, T1, which lost both types of appendages, and investigated how the cell appendages affect the adhesion properties of this useful bacterium for environmental technology. Wild-type cells attained irreversible adhesion to polyurethane carriers within 30 s, while adhesion of T1 cells was still reversible at that time. While T1 showed decreased adhesion with decreasing ionic strength and did not adhere at all at 0.015 mM, adhesion of the wild type was fully independent of ionic strength. Acinetobacter sp. Tol 5 was also found to be not motile. Our results suggest that through the long distant interaction mediated by the appendages between the cells and surfaces, Tol 5 cells can attain irreversible adhesion very quickly without approaching the vicinity of the substratum.  相似文献   

14.
CELL ADHESION MOLECULES: A UNIFYING APPROACH TO TOPOGRAPHIC BIOLOGY   总被引:1,自引:0,他引:1  
Cell adhesion molecules are pivotal to the development and maintenance of tissue structure in metazoan organisms. In mammals, several families of proteins are involved in cell-cell and cell-matrix adhesion. The cadherins are homophilic, primary CAMs, involved in the establishment of boundaries between cell collectives early in embryogenesis. The Ig gene superfamily have diversified widely, with homophilic and heterophilic CAMs and antigen recognition molecules amongst the members. The Integrin family play an important role in binding to extracellular matrix, as well as counter-receptors on the surface of other cells. The Selectin family and HCAM are carbohydrate-binding proteins, and play a prominent role in the circulation of lymphocytes and neoplastic cells. CAMs are fundamental to development of tissue structure in metazoan organisms. Cellular differentiation dictates adherence to a specific microenvironment, through the pattern of surface CAM expression. Conversely, CAM binding can affect gene expression within the cell itself. Cell differentiation and cell adhesion are interdependent processes. In the adult, CAM are crucial to tissue maintenance. Cells frequently change their adhesive properties in response to physiological or pathological processes. The integrity of the vascular system is maintained by circulating platelets which are capable of rapid upregulation of cell adhesion and profound changes in metabolism, on contact with subendothelial matrix. Both endothelial cells and neutrophils undergo changes in CAM expression in response to inflammatory mediators, permitting rapid and appropriate recruitment of phagocytes to damaged tissue. Tissue repair is dependent on phenotypic changes in normally static cells, allowing increased motility and replication. The immune system requires constitutive cells to undergo multiple complex adhesion and detachment events over short periods of time, and is capable of discriminating normal self from aberrant-self or non-self, through antigen specific recognition and adhesion molecules. The pathophysiology of processes such as infection and neoplasia are profoundly affected by cellular CAM expression. CAMs and related molecules are fundamental to the development, maintenance and surveillance of tissue structure.  相似文献   

15.
The establishment and maintenance of precisely organized tissues requires the formation of sharp borders between distinct cell populations. The maintenance of segregated cell populations is also required for tissue homeostasis in the adult, and deficiencies in segregation underlie the metastatic spreading of tumor cells. Three classes of mechanisms that underlie cell segregation and border formation have been uncovered. The first involves differences in cadherin-mediated cell-cell adhesion that establishes interfacial tension at the border between distinct cell populations. A second mechanism involves the induction of actomyosin-mediated contraction by intercellular signaling, such that cortical tension is generated at the border. Third, activation of Eph receptors and ephrins can lead to both decreased adhesion by triggering cleavage of E-cadherin, and to repulsion of cells by regulation of the actin cytoskeleton, thus preventing intermingling between cell populations. These mechanisms play crucial roles at distinct boundaries during development, and alterations in cadherin or Eph/ephrin expression have been implicated in tumor metastasis.  相似文献   

16.
The formation of boundaries between or within tissues is a fundamental aspect of animal development. In the developing vertebrate hindbrain, boundaries separate molecularly and neuroanatomically distinct segments called rhombomeres. Transplantation studies have suggested that rhombomere boundaries form by the local sorting out of cells with different segmental identities. This sorting-out process has been shown to involve repulsive interactions between cells expressing an Eph receptor tyrosine kinase, EphA4, and cells expressing its ephrinB ligands. Although a model for rhombomere-boundary formation based on repulsive Eph-ephrin signaling is well established in the literature, the predictions of this model have not been tested in loss-of-function experiments. Here, we eliminate EphA4 and ephrinB2a proteins in zebrafish with antisense morpholinos (MO) and find that rhombomere boundaries are disrupted in EphA4MO embryos, consistent with a requirement for Eph-ephrin signaling in boundary formation. However, in mosaic embryos, we observe that EphA4MO cells and EphA4-expressing cells sort from one another, an observation that is not predicted by the Eph-ephrin repulsion model but instead suggests that EphA4 promotes cell adhesion within the rhombomeres in which it is expressed. Differential cell adhesion is known to be an effective mechanism for cell sorting. We therefore propose that the well-known EphA4-dependent repulsion between rhombomeres operates in parallel with the EphA4-dependent adhesion within rhombomeres described here to drive the cell sorting that underlies rhombomere-boundary formation.  相似文献   

17.
Dovas A  Cox D 《Cellular signalling》2011,23(8):1225-1234
Podosomes are ventral adhesion structures prominent in cells of the myeloid lineage. A common aspect of these cells is that they are highly motile and must to traverse multiple tissue barriers in order to perform their functions. Recently podosomes have gathered attention from researchers as important cellular structures that can influence cell adhesion, motility and matrix remodeling. Adhesive and soluble ligands act via transmembrane receptors and propagate signals to the leukocyte cytoskeleton via small G proteins of the Rho family, tyrosine kinases and scaffold proteins and are able to induce podosome formation and rearrangements. Manipulation of the signals that regulate podosome formation and dynamics can therefore be a strategy to interfere with leukocyte functions in a multitude of pathological settings, such as infections, atherosclerosis and arthritis. Here, we review the major signaling molecules that act in the formation and regulation of podosomes.  相似文献   

18.
Glutelin accumulation in the apical spikelet of the top primary branch (superior spikelet) and the second spikelet of the lowest secondary branch (inferior spikelet) of the ear of the rice plant (Oryza sativa L.) was characterized during grain filling.In the superior spikelet, the accumulation of dry matter and nitrogen started immediately after flowering and rapidly reached the maturation level by 20 days after heading (DAH). At 7 DAH, total RNA content had already reached its maximum level and glutelin mRNA content 70% of its maximum. The increase in glutelin mRNA was followed by a rapid increase in glutelin between 7 and 16 DAH.In the inferior spikelet dry matter, nitrogen and glutelin accumulation were low immediately after flowering and increased only after grain filling of the superior spikelet was almost complete. Total RNA and glutelin mRNA increased much later at slower rates than in the superior spikelet.It is very likely that the retardation of dry matter, total nitrogen and glutelin accumulation in the inferior spikelet is due to retardation of differentiation and development of endosperm tissue, and to glutelin gene expression in endosperm cells. It is suggested that the delayed development resulted from limited partitioning of nutrients to the inferior spikelet at the early stage of ripening.  相似文献   

19.
The oviduct epithelium of the Japanese quail is a monolayered epithelium consisting of two types of columnar cells, goblet type gland (G-) cells and ciliated (C-) cells. We found these cells to be arranged in a checkerboard pattern. Three types of cell boundaries formed between the two different types of cells were examined statistically at various levels of the columnar cells. There was a tendency on the part of the cells to form boundaries between G- and C- cells rather than between two C- cells or between two G- cells. We therefore propose that the pattern is constructed under a rule of maximizing the length of boundaries of two different types of cells owing to the fact that theirs is the greatest adhesion capacity. The role of microfilament bundles running along the apical cell boundaries is also discussed. It is suggested that they are in a tense state so as to shorten total length by contraction.  相似文献   

20.
Innate non-specific cell substratum adhesion   总被引:1,自引:0,他引:1  
Adhesion of motile cells to solid surfaces is necessary to transmit forces required for propulsion. Unlike mammalian cells, Dictyostelium cells do not make integrin mediated focal adhesions. Nevertheless, they can move rapidly on both hydrophobic and hydrophilic surfaces. We have found that adhesion to such surfaces can be inhibited by addition of sugars or amino acids to the buffer. Treating whole cells with αlpha-mannosidase to cleave surface oligosaccharides also reduces adhesion. The results indicate that adhesion of these cells is mediated by van der Waals attraction of their surface glycoproteins to the underlying substratum. Since glycoproteins are prevalent components of the surface of most cells, innate adhesion may be a common cellular property that has been overlooked.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号