首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In crossflow filtration (CFF) of a culture broth of Penicillium multicolor, several types of membranes were tested with respect to permeate flux and the permeability of β-galactosidase, an extracellular enzyme. Membranes with surface pore sizes of 0.5 and 0.08 μm were selected because of the high flux and high β-galactosidase permeability. They were combined with a 3 × 10−2 m3 fermentor as a system of repeated batch culture with crossflow filtration. With this system, β-galactosidase was continuously produced for 6 d and its productivity was about 3 times higher than that in fed-batch culture.  相似文献   

2.
Membrane technologies were investigated with the aim to improve stability of C-Phycocyanin extracts resulting from ultrasonic breakage of Spirulina platensis. Five membranes, ranging from microfiltration to reverse osmosis, were utilized both for clarification and concentration steps. Nanofiltration with tubular organic membranes exhibited good performances: pigment recovery was 100%, mean permeation flux was 85 l h–1 m–2 for achieving a concentration factor of 7 with 30×105 Pa pressure and 1.5 m s–1 tangential velocity (turbulent flow).  相似文献   

3.
Cross-flow microfiltration is an important step in separating Baker’s yeast (Saccharomyces cerevisiae) from aqueous suspension in many processes. However the permeate flux often declines rapidly due to colloidal fouling of membranes and concentration polarisation. The present work explores the possibility of maintaining acceptable permeate flux by co-current sparging of gas along with the feed, which would scour away colloidal deposits and reduce concentration polarisation of membranes. In this work, both washed and unwashed yeast were used to study the effect of washing to reduce protein fouling of membranes. It was found that permeate flux increased by 45% for liquid throughput of 75 kg/h for a feed concentration of 2.0 kg/m3 of washed yeast as compared with unwashed yeast suspension without gas sparging. For washed yeast suspension, the increase in gas flow rate from 0.5 lpm to 1.5 lpm (30 l/h to 90 l/h) had beneficial effect on permeate flux. It is concluded that in the present case, the gas flow rate should be less than or equal to the liquid flow rate for enhancement of permeates flux.  相似文献   

4.
This paper presents results on the production of alpha-agarase by a fermentation process and its separation using membrane microfiltration (MF). Optimization of fermentation conditions for alpha-agarase production using Altermonas agarlyticus grown on medium containing agar as a carbon source was done in batch, fed-batch and continuous fermentations. Continuous culture at a dilution rate of 0.03 h(-1) appeared to be best suited for production of alpha-agarase by this organism. At 0.03 h(-1) dilution rate, enzyme activity was 0.9 U/ml. Clarification of broth was done using a hollow-fibre microfiltration membrane. The influence of hydrodynamic parameters on permeate flux and enzyme activity was studied. The best performance was obtained with prefiltered fermentation broth. A stable permeate flux of about 250-270 ml/min.m2 and an enzyme retention rate between 0% and 25% was obtained at temperatures between 6 degrees C and 22 degrees C, transmembrane pressure of 100 mm Hg and fluid cross-flow velocity of 4 x 10(-2) m/s. From the experiments on concentration of fermentation broth, the best compromise between enzyme activity transmission and permeate flux was obtained at a concentration factor of 2.  相似文献   

5.
Factors affecting the performance of crossflow filtration were investigated with a thin-channel module and yeast cells. In crossflow filtration of Saccharomyces cerevisiae cells cultivated with YPD medium (Yeast extract, polypeptone, and dextrose) and suspended in saline, a steady state was attained within several minutes when the cell concentration was low and the circulation flow rate was high. The steady-state flux and the change in flux during the initial unsteady state were explained well by conventional filtration theory, with the amount of cake deposited and the mean specific resistance to the cake measured in a dead-end filtration apparatus used in calculation. When the circulation flow rate was lower than a critical value, a part of the channel of the crossflow filtration module was plugged with cell cake, and thus the steady-state flux was low. In crossflow filtration of suspensions of commercially available baker's yeast, the flux gradually decreased, and the flux after 8 h of filtration was lower than the value calculated by filtration theory. Fine particles contaminating the baker's yeast was responsible for the decrease. A similar phenomenon was responsible for the decrease. A similar phenomenon was observed in crossflow filtration of a broth of S. cerevisiae cells cultivated in molasses medium, which also contains such particles, had no effect of the permeation flux during crossflow filtration. (c) 1993 John Wiley & Sons, Inc.  相似文献   

6.
Membrane clarification of green tea extract was studied as a treatment to reduce sediments in packaged drinks and as a pretreatment for concentration processes. The flux and variation of components were examined in dead-end and crossflow filtration with several types of membranes. In dead-end ultrafiltration, the flux reduction rate was small, although the initial flux was similar to the final flux in microfiltration. Prefiltration was effective in decreasing the reduction rate of flux. As the pore size of microfiltration membranes became smaller, the dry weight decreased gradually and the optical transmission at 660 nm increased. By ultrafiltration, 30–50% pectin, 3–11% catechins and, 7–20% caffeine were rejected. Crossflow filtration was effective in keeping the flux high. The ultrafiltration spiral membrane (pore size: 0.008 μm) was selected for repeated batch clarification of prefiltered green tea crude extract and showed reproducible performance.  相似文献   

7.
The influence of several operating parameters on the critical flux in the separation of lactic acid-producing bacteria from fermentation broth was studied using a ceramic microfiltration membrane equipped with a permeate pump. The operating parameters studied were crossflow velocity over the membrane, bacterial cell concentration, protein concentration, and pH. The influence of the isoelectric point (IEP) of the membrane was also investigated. In the interval studied (5.3-10.8 m/s), the crossflow velocity had a marked effect on the critical flux. When the crossflow velocity was increased the critical flux also increased. The bacterial cells were retained by the membrane and the concentration of bacterial cells did not affect the critical flux in the interval studied (1.1-3.1 g/L). The critical flux decreased when the protein concentration was increased. It was found that the protein was adsorbed on the membrane surface and protein retention occurred even though the conditions were such that no filter cake was present on the membrane surface. When the pH of the medium was lowered from 6 to 5 (and then further to 4) the critical flux decreased from 76 L/m(2)h to zero at both pH 5 and pH 4. This was found to be due to the fact that the lowering in pH had affected the physiology of the bacterial cells so that the bacteria tended to adhere to the membrane and to each other. The critical flux, for wheat flour hydrolysate without particles, was much lower (28 L/m(2)h) when using a membrane with an IEP of 5.5 than the critical flux of a membrane with an IEP at pH 7 (96 L/m(2)h). This was found to be due to an increased affinity of the bacteria for the membrane with the lower IEP.  相似文献   

8.
An experimental study of the interaction of the enzyme yeast alcohol dehydrogenase (YADH) with microfiltration membranes has been carried out. Most measurements were made with capillary pore inorganic membranes (Anopore) with some comparative measurements being made with polymeric membranes of low protein affinity (Durapore). It has been shown that the prolonged exposure of the enzyme to the inorganic membrane under low-shear conditions (slow recycle) resulted in a loss of enzyme activity. Under filtration conditions, the membrane permeation rate decreased continuously with time. This decrease could be quantified using the standard blocking filtration law, which describes a decrease in pore volume due to deposition of enzyme on the walls of the pore. No significant loss in activity of permeating enzyme occurred under solution conditions where the enzyme was stable. However, a significant loss of such activity occurred under solution conditions where the enzyme was slightly unstable. The experiments indicate that the likely mechanism for activity loss is a membrane/enzyme interaction resulting from a shear induced deformation of the enzyme structure. Two conclusions of practical importance are drawn from the work. (c) 1992 John Wiley & Sons, Inc.  相似文献   

9.

In this study, we developed a simplified method for producing, separating, and concentrating lipases derived from solid-state fermentation of agro-industrial residues by filamentous fungi. First, we used Aspergillus niger to produce lipases with hydrolytic activity. We analyzed the separation and concentration of enzymes using membrane separation processes. The sequential use of microfiltration and ultrafiltration processes made it possible to obtain concentrates with enzymatic activities much higher than those in the initial extract. The permeate flux was higher than 60 L/m2 h during microfiltration using 20- and 0.45-µm membranes and during ultrafiltration using 100- and 50-kDa membranes, where fouling was reversible during the filtration steps, thereby indicating that the fouling may be removed by cleaning processes. These results demonstrate the feasibility of lipase production using A. niger by solid-state fermentation of agro-industrial residues, followed by successive tangential filtration with membranes, which simplify the separation and concentration steps that are typically required in downstream processes.

  相似文献   

10.
A filtration rig equipped with a tubular alumina membrane was used to study the performance of crossflow microfiltration of Lactobacillus helveticus. Experiments were performed at constant permeation flux. High cell concentrations and fast transient conditions to the stationary J adversely affected permeability. Membrane fouling was due to a fast irreversible layer formation and to a reversible cell cake. This microbial deposit characteristics were dependent on the ratio permeation flux/wall shear stress, J/tau(w). Fouling was faster and more severe when J/tau(w) was greater than a critical value of 1.15 L(-1) . h(-1) . m(-2) . Pa(-1). The disordered structure of this cell cake seemed to lead to a macromolecule deposit between the cells which adversely affected the membrane permeability. (c) 1996 John Wiley & Sons, Inc.  相似文献   

11.
In this study, Faujasite (FAU) zeolite was coated on low-cost tubular ceramic support as a separating layer through hydrothermal route. The mixture of silicate and aluminate solutions was used to create a zeolitic separation layer on the support. The prepared zeolite ceramic composite membrane was characterized using X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), particle size distribution (PSD), field emission scanning electron microscopy (FESEM), and zeta potential measurements. The porosity of ceramic support (53%) was reduced by the deposition of FAU (43%) zeolite layer. The pore size and water permeability of the membrane were evaluated as 0.179?µm and 1.62?×?10?7?m3/m2?s?kPa, respectively, which are lower than that of the support (pore size of 0.309?µm and water permeability of 5.93?×?10?7?m3/m2?s?kPa). The permeate flux and rejection potential of the prepared membrane were evaluated by microfiltration of bovine serum albumin (BSA). To study the influences of three independent variables such as operating pressure (68.94–275.79?kPa), concentration of BSA (100–500?ppm), and solution pH (2–4) on permeate flux and percentage of rejection, the response surface methodology (RSM) was used. The predicted models for permeate flux and rejection were further subjected to biobjective genetic algorithm (GA). The hybrid RSM-GA approach resulted in a maximum permeate flux of 2.66?×?10?5?m3/m2?s and BSA rejection of 88.02%, at which the optimum conditions were attained as 100?ppm BSA concentration, 2 pH solution, and 275.79?kPa applied pressure. In addition, the separation efficiency was compared with other membranes applied for BSA separation to know the potential of the fabricated FAU zeolite ceramic composite membrane.  相似文献   

12.
Summary In an attempt to improve corrinoid production byM. barkeri strain Fusaro, a repeated fed-batch culture coupled with a membrane module on methanol-acetate medium was used. Productivity of 22 mg-corrinoid/1. day was obtained during 626 h cultivation with corrinoid and cell mass concentration of 95 mg/l and 25.9 g-dry cell/l, respectively. The minimum value for membrane flux permeation was 18 liter/m2. h for cell mass concentration between 25.9 to 31.0 g-dry cell/l. with rejection of 100 %.  相似文献   

13.
The effect of a gas/liquid two-phase flow on the recovery of an enzyme was evaluated and compared with standard crossflow operation when confronted with the microfiltration of a high-fouling yeast suspension. Ceramic tubular and flat sheet membranes were used. At constant feed concentration (permeate recycling) and transmembrane pressure, the results obtained with the tubular membrane were dependent on the two-phase flow pattern. In comparison with single-phase flow performances at the same liquid velocity, the enzyme transmission was maintained at a high level with a bubble flow pattern but it decreased by 70% with a slug flow, whatever the flow rate ratio. Identical results were obtained with flat sheet membranes: for the highest flow rate ratio, the enzyme transmission was reduced by 70% even though the permeate flux was improved by 240%. During diafiltration experiments with the tubular membrane, it was found that a bubble flow pattern led to a 13% higher enzyme recovery compared to single-phase flow conditions, whereas with a slug flow the enzyme recovery was strongly reduced. With bubble flow conditions, energy consumption was minimal, confirming that this flow pattern was the most suitable for enzyme recovery.  相似文献   

14.
A novel method of producing controlled vortices was used to reduce both concentration polarization and membrane fouling during microfiltration of Saccharomyces cerevisiae broth suspensions. The method involves flow around a curved channel at a sufficient rate so as to produce centrifugal instabilities (called Dean vortices). These vortices depolarize the build-up of suspended particles such as yeast cells at the membrane-solution interface and allow for increased membrane permeation rates. Various operating conditions under which such vortices effectively reduced cake build-up of suspended particles such as yeast cells at the membrane-solution interface and allow for increased membrane permeation rates. Various operating conditions under which such vortices effectively reduced cake build-up during microfiltration of 0 to 0.55 dry wt% yeast broth were investigated. Flux improvements of over 60% for 0.25 dry wt% yeast broth for flow with over that without Dean vortices were observed. This beneficial effect increased with increasing retentate flow rate and increasing transmembrane pressure and decreased with increasing concentration of suspended matter. Similar behavior was observed whether the cells were viable of killed. the improvement in flux in the presence over that in the absence of vortices correlated well with centrifugal force or azimuthal velocity squared. The relative cake resistances increased with reservoir yeast concentration. These values with vortices increased from 62% to 75% of that without vortices with increasing yeast concentration. The ratio of the cake thicknesses in the limiting case (at high feed concentration) was 3.25. These results suggest that self-cleaning spiral vortices could be effective in maintaining good and steady microfiltration performance with cell suspensions other than those tested. (c) 1995 John Wiley & Sons, Inc.  相似文献   

15.
The microfiltration performance of a novel membrane module design with helically wound hollow fibers is compared with that obtained with a standard commercial-type crossflow module containing linear hollow fibers. Cell suspensions (yeast, E. coli, and mammalian cell cultures) commonly clarified in the biotechnology industry are used for this comparison. The effect of variables such as transmembrane pressure, particle suspension concentration, and feed flow rate on membrane performance is evaluated. Normalized permeation fluxes versus flow rate or Dean number behave according to a heat transfer correlation obtained with centrifugal instabilities of the Taylor type. The microfiltration performance of this new module design, which uses secondary flows in helical tubes, is significantly better than an equivalent current commercial crossflow module when filtering suspensions relevant to the biotechnology industry. Flux and capacity improvements of up to 3.2-fold (constant transmembrane pressure operation) and 3.9-fold (constant flux operation), respectively, were obtained with the helical module over those for the linear module.  相似文献   

16.
This work describes the recovery of an extracellular alkaline protease from fermentation broths of a Bacillus sp ATCC 21536, at pH=10.0 using ultrafiltration (MWCO 100,000) and microfiltration (0.1 m) membranes in hollow fiber devices. The influence of membrane pore size and polymeric material and membrane filtration performance was studied. High protein recoveries and high average flux rates were obtained with polysulfone membranes. A decrease of concentration polarization was obtained, simultaneously with enhancement of filtration flux rate and enzyme recovery by using submicron sized charged particles. These polymers lead to flocculation and adsorption of whole cells and soluble factors from the fermentation broth. The best results were obtaiend by combination of cationic (0.1%) and anionic (0.04%) polymers.  相似文献   

17.
The periodical stopping of permeation flow was applied to increase the permeation flux in crossflow filtration of commercially available baker's yeast cell suspension. The permeation flux after 3 h filtration in the crossflow filtration increased to 8 x 10(-5) m(3) /m(2) s (290 L/m(2) h) from 2 x 10(-5) m(3)/m(2) s (72 L/m(2) h) by applying the periodical stopping of permeation. Introduction of air bubbles during the stopping period of permeation further increased the flux.(c) John Wiley & Sons, Inc.  相似文献   

18.
Crossflow filtration of yeast broth cultivated in molasses   总被引:3,自引:0,他引:3  
A broth of yeast cells cultivated in molasses was crossfiltered with a thin-channel module. The permeation flux gradually decreased at a constant cell concentration. The flux was much lower than that obtained for yeast broth cultivated in yeast extract, polypeptone, and dextrose (YPD) medium during the filtration. The flux did not depend on the membrane pore size (0.45 to 5 mum). The steady-state flux was one-twentieth that calculated for a cake filtration mode from the amount of cake per unit filtration area and the specific resistance of the cake measured in a dead-end filtration apparatus. The lower flux was due to small particles (most of which were less than 1 mum in diameter) in the molasses. The mehanism of crossflow filtration of broths of yeast cells cultivated in molasses was clarified by analysis of the change in flux with time and observations with scanning electron microscopy. At the initial stage of crossflow filtration the yeast cells and particles from the molasses were deposited on the membrane to form the molasses were deposited on the membrane to form a cake in a similar way to dead-end filtration. After the deposition of cells onto the membrane ceased, the fine particles from molasses formed a thin layer, which had higher resistance than the cake formed next to the membrane. The backwashing method was effective to increase the flux. The flux increased low when the pore size was 0.45 to 0.08 mum, but using larger pores of 3 to 5 mum it returned almost to the bases line. (c) 1994 John Wiley & Sons, Inc.  相似文献   

19.
In ethanol fermentations inhibition of the microorganism by ethanol limits the amount of substrate in the feed that can be converted. In a process high feed concentrations are desirable to minimize the flows. Such high feed concentrations can be realized in integrated processes in which ethanol is recovered from the fermentation broth as it is formed. In this study ethanol recovery by pervaporation was coupled to glucose fermentations by baker's yeast. Pervaporation was carried out with commercial silicone based hollow-fibre membrane modules with relatively high fluxes. Three different types of process configurations with pervaporation were investigated. Two of these configurations also included cell retention by microfiltration, in order to optimize the productivity. In the systems with pervaporation a feed containing 360 kg/m3 glucose could be converted almost completely. This feed concentration is a factor three higher than in a process without ethanol recovery. The productivity was 14 kg/m3 h in a system with pervaporation only, and could be increased to 43 kg/m3 h in the system with all recycle by microfiltration. The kinetic data suggest that accumulation of inhibitory compounds occurs in the integrated system. The integrated process was relatively easy in operation.  相似文献   

20.
In this work, we performed recovery of ethanol from a fermentation broth of banana pseudostem by pervaporation (PV) as a lower-energy-cost alternative to traditional separation processes such as distillation. As real fermentation systems generally contain by-products, it was investigated the effects of different components from the fermentation broth of banana pseudostem on PV performance for ethanol recovery through commercial flat sheet polydimethylsiloxane (PDMS) membrane. The experiments were compared to a binary solution (ethanol/water) to determine differences in the results due to the presence of fermentation by-products. A real fermented broth of banana pseudostem was also used as feed for the PV experiments. Seven by-products from fermented broth were identified: propanol, isobutanol, methanol, isoamyl alcohol, 1-pentanol, acetic acid, and succinic acid. Moreover, the residual sugar content of 3.02 g/L1 was obtained. The presence of methanol showed the best results for total permeate flux (0.1626 kg·m−2·h−1) and ethanol permeate flux (0.0391 kg·m−2·h−1) during PV at 25°C and 3 wt% ethanol, also demonstrated by the selectivity and enrichment factor. The lowest total fluxes of permeate were observed in the experiments containing the acids. Better permeance of 0.1171 from 0.0796 kg·m−2·h−1 and membrane selectivity of 9.77 from 9.30 were obtained with real fermentation broth than with synthetic solutions, possibly due to the presence of by-products in the multicomponent mixtures, which contributed to ethanol permeation. The results of this work indicate that by-products influence pervaporation of ethanol with hydrophobic flat sheet membrane produced from the fermented broth of banana pseudostem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号