首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In vitro protein biosynthesis became a powerful technology for biochemical research. Beside the determination of structure and function in vitro selection of proteins is also of great interest. In most cases the use of a synthesized protein for further applications depends on its purity. For this purpose the in vitro production and purification of proteins with short affinity tails was established. A cell-free protein synthesis system was employed to produce bovine heart fatty acid-binding protein and bacterial chloramphenicol acetyltransferase with and without fusion of the Strep-tag affinity peptide. The quantitative removal of fusion protein during cell-free synthesis from a batch reaction and a semicontinuous flow cell-free reactor were achieved. No significant influence of the Strep-tag and the conditions during the affinity chromatography on maturation or activity of the proteins were observed. The product removal from the continuous flow cell-free reactor is still an only partially solved problem, because the use of ultrafiltration membranes has some limitations. The results document that it should be possible to avoid these limitations by introducing an affinity system.  相似文献   

3.
The Strep-tag II is an eight-residue minimal peptide sequence (Trp-Ser-His-Pro-Gln-Phe-Glu-Lys) that exhibits intrinsic affinity toward streptavidin and can be fused to recombinant proteins in various fashions. We describe a protocol that enables quick and mild purification of corresponding Strep-tag II fusion proteins--including their complexes with interacting partners--both from bacterial and eukaryotic cell lysates using affinity chromatography on a matrix carrying an engineered streptavidin (Strep-Tactin), which can be accomplished within 1 h. A high-affinity monoclonal antibody (StrepMAB-Immo) permits stable immobilization of Strep-tag II fusion proteins to solid surfaces, for example, for surface plasmon resonance analysis. Selective and sensitive detection on western blots is achieved with Strep-Tactin/enzyme conjugates or another monoclonal antibody (StrepMAB-Classic). Thus, the Strep-tag II, which is short, biologically inert, proteolytically stable and does not interfere with membrane translocation or protein folding, offers a versatile tool both for the rapid isolation of a functional gene product and for its detection or molecular interaction analysis.  相似文献   

4.

Background  

Many techniques in molecular biology, clinical diagnostics and biotechnology rely on binary affinity tags. The existing tags are based on either small molecules (e.g., biotin/streptavidin or glutathione/GST) or peptide tags (FLAG, Myc, HA, Strep-tag and His-tag). Among these, the biotin-streptavidin system is most popular due to the nearly irreversible interaction of biotin with the tetrameric protein, streptavidin. The major drawback of the stable biotin-streptavidin system, however, is that neither of the two tags can be added to a protein of interest via recombinant means (except for the Strep-tag case) leading to the requirement for chemical coupling.  相似文献   

5.
In response to the rapidly growing field of proteomics, the use of recombinant proteins has increased greatly in recent years. Recombinant hybrids containing a polypeptide fusion partner, termed affinity tag, to facilitate the purification of the target polypeptides are widely used. Many different proteins, domains, or peptides can be fused with the target protein. The advantages of using fusion proteins to facilitate purification and detection of recombinant proteins are well-recognized. Nevertheless, it is difficult to choose the right purification system for a specific protein of interest. This review gives an overview of the most frequently used and interesting systems: Arg-tag, calmodulin-binding peptide, cellulose-binding domain, DsbA, c-myc-tag, glutathione S-transferase, FLAG-tag, HAT-tag, His-tag, maltose-binding protein, NusA, S-tag, SBP-tag, Strep-tag, and thioredoxin.  相似文献   

6.
链霉亲和素/生物素(Streptavidin/Biotin)体系作为目前已知的最高亲和力作用体系,已在生物学研究中获得广泛应用。本文针对Streptavidin/Biotin和Strep-Tactin/Strep-tag两个相关系统的演化,分别从链霉亲和素蛋白的结构改造、亲和肽标签优化等方面进行了较为详细的归纳。通过对链霉亲和素蛋白各种突变体的优缺点的比较,有助于实际应用中选择合适的Streptavidin突变体。本文通过对链霉亲和素蛋白质进化的综述,可帮助更准确地理解市场上各种链霉亲和素蛋白的功能和用途,并为深入研究链霉亲和素蛋白的进化提供参考。  相似文献   

7.
8.
9.
Fatty acid binding proteins (FABP) are a family of 14-15 kDa proteins found in high abundance in many mammalian cell types. The physiological functions of the FABP remain unknown. It is also not known whether each FABP has a unique function, or whether all FABP function in a similar manner in their respective tissues. In this report the rate of transfer of anthroyloxy-labeled free fatty acid (ffa) from FABP to phospholipid bilayers is monitored using a fluorescence resonance energy transfer assay. A comparison is made between heart muscle FABP and liver FABP, and the results show that the rate of ffa transfer from the heart protein is an order of magnitude greater than the rate of transfer from the liver protein. Ffa transfer rates from both liver and heart FABP are independent of acceptor concentration and composition, suggesting that, at least in the case of model membrane acceptor vesicles, the mechanism of transfer is via aqueous diffusion rather than via collision of FABP with membranes. Since the rate of ffa transfer is likely to be important to cellular ffa traffic, these studies suggest that heart FABP may function differently within the myocyte than does liver FABP within the hepatocyte.  相似文献   

10.
The Strep-tag constitutes a nine amino acid-peptide that binds specifically to streptavidin and occupies the same pocket where biotin is normally complexed. Since the Strep-tag participates in a reversible interaction it can be applied for the efficient purification of corresponding fusion proteins on affinity columns with immobilized streptavidin. Elution of the bound recombinant protein can be effected under mild buffer conditions by competition with biotin or a suitable derivative. In addition, Strep-tag fusion proteins can be easily detected in immunochemical assays, like Western blots or ELISAs, by means of commercially available streptavidin-enzyme conjugates. The Strep-tag/streptavidin system has been systematically optimized over the past years, including the engineering of streptavidin itself. Structural insight into the molecular mimicry between the peptide and biotin was furthermore gained from X-ray crystallographic analysis. As a result the system provides a reliable and versatile tool in recombinant protein chemistry. Exemplary applications of the Strep-tag are discussed in this review.  相似文献   

11.
We present the construction of a synthetic library based on the scaffold of bovine heart fatty acid-binding protein (FABP) with 1.1x10(14) independent members. Ribosome display was applied to select streptavidin-binding peptides in vitro from 2x10(13) molecules of the library each encoding FABP with 15 contiguous random amino acid residues at its N terminus. The selection yielded several different binding peptides. The best binder possessed a dissociation constant as low as 4nM and, in contrast to the previously isolated peptides, contained no HPQ motif. A substitution analysis enabled shortening of the 15-mer peptide and revealed a 9-mer variant with a dissociation constant of 17nM, which is a 1000-fold increase of affinity compared to the already known peptides of this size. This high-affinity binding peptide in combination with the whole set of streptavidin conjugates should be an extremely useful tool for the detection and purification of recombinant proteins.  相似文献   

12.
Fatty acid binding proteins (FABPs) are small cytosolic proteins with virtually identical backbone structures that facilitate the solubility and intracellular transport of fatty acids. At least eight different types of FABP occur, each with a specific tissue distribution and possibly with a distinct function. To define the functional characteristics of all eight human FABPs, viz. heart (H), brain (B), myelin (M), adipocyte (A), epidermal (E), intestinal (I), liver (L) and ileal lipid-binding protein (I-LBP), we studied their ligand specificity, their conformational stability and their immunological crossreactivity. Additionally, binding of bile acids to I-LBP was studied. The FABP types showed differences in fatty acid binding affinity. Generally, the affinity for palmitic acid was lower than for oleic and arachidonic acid. All FABP types, except E-FABP, I-FABP and I-LBP interacted with 1-anilinonaphtalene-8-sulphonic acid (ANS). Only L-FABP, I-FABP and M-FABP showed binding of 11-((5-dimethylaminonaphtalene-1-sulfonyl)amino)undecanoic acid (DAUDA). I-LBP showed increasing binding of bile acids in the order taurine-conjugated>glycine-conjugated>unconjugated bile acids. A hydroxylgroup of bile acids at position 7 decreased and at position 12 increased the binding affinity to I-LBP. The fatty acid-binding affinity and the conformation of FABP types were differentially affected in the presence of urea. Our results demonstrate significant differences in ligand binding, conformational stability and surface properties between different FABP types which may point to a specific function in certain cells and tissues. The preference of I-LBP (but not L-FABP) for conjugated bile acids is in accordance with a specific role in bile acid reabsorption in the ileum.  相似文献   

13.
Histidine (His) tags are one of the most popular fusion tags for the isolation of proteins via metal affinity chromatography. The fusion tag is routinely left attached to the protein when carrying out experiments, with the assumption that the addition has no effect on structure or function. In the present study, we have prepared four proteins of the gene regulatory protein AreA from Aspergillus nidulans for crystallization experiments: a 91-amino acid peptide encompassing the minimal DNA-binding region, both with and without the His-tag (HZFB and ZFB, respectively), and a 155-amino acid protein previously proposed to be the entire DNA-binding domain for AreA, both with and without the His-tag (HG1b and G1b, respectively). To test the integrity of the four AreA proteins, urea denaturation experiments and DNA-binding studies were performed using fluorescence spectroscopy. The DNA-binding data showed similar dissociation constants for all proteins, with Kd values in the nanomolar range. The urea denaturation data, however, clearly indicated that the HZFB protein exhibited a completely different denaturation profile when compared to the ZFB, HG1b, and G1b proteins. The HZFB protein showed a profile indicative of the presence of an altered conformation around the sole tryptophan, whereas the other proteins showed a transition point between 3 and 4 M urea concentration. These data show that, although function was not altered for any of the proteins studied, the structure of one of the His-tagged proteins was different from the native form of that protein.  相似文献   

14.
Affinity purification of Strep-tagged fusion proteins on resins carrying an engineered streptavidin (Strep-Tactin) has become a widely used method for isolation of protein complexes under physiological conditions. Fusion proteins containing two copies of Strep-tag II, designated twin-Strep-tag or SIII-tag, have the advantage of higher affinity for Strep-Tactin compared to those containing only a single Strep-tag, thus allowing more efficient protein purification. However, this advantage is offset by the fact that elution of twin-Strep-tagged proteins with biotin may be incomplete, leading to low protein recovery. The recovery can be dramatically improved by using denaturing elution with sodium dodecyl sulfate (SDS), but this leads to sample contamination with Strep-Tactin released from the resin, making the assay incompatible with downstream proteomic analysis. To overcome this limitation, we have developed a method whereby resin-coupled tetramer of Strep-Tactin is first stabilized by covalent cross-linking with Bis(sulfosuccinimidyl) suberate (BS3) and the resulting cross-linked resin is then used to purify target protein complexes in a single batch purification step. Efficient elution with SDS ensures good protein recovery, while the absence of contaminating Strep-Tactin allows downstream protein analysis by mass spectrometry. As a proof of concept, we describe here a protocol for purification of SIII-tagged viral protein VPg-Pro from nuclei of virus-infected N. benthamiana plants using the Strep-Tactin polymethacrylate resin cross-linked with BS3. The same protocol can be used to purify any twin-Strep-tagged protein of interest and characterize its physiological binding partners.  相似文献   

15.
A set of modular broad-host-range expression vectors with various affinity tags (six-His-tag, FLAG-tag, Strep-tag II, T7-tag) was created. The complete nucleotide sequences of the vectors are known, and these small vectors can be mobilized by conjugation. They are useful in the purification of proteins and protein complexes from gram-negative bacterial species. The plasmids were easily customized for Thiocapsa roseopersicina, Rhodobacter capsulatus, and Methylococcus capsulatus by inserting an appropriate promoter. These examples demonstrate the versatility and flexibility of the vectors. The constructs harbor the T7 promoter for easy overproduction of the desired protein in an appropriate Escherichia coli host. The vectors were useful in purifying different proteins from T. roseopersicina. The FLAG-tag-Strep-tag II combination was utilized for isolation of the HynL-HypC2 protein complex involved in hydrogenase maturation. These tools should be useful for protein purification and for studying protein-protein interactions in a range of bacterial species.  相似文献   

16.
The hexahistidine is a fusion tag used for the isolation of proteins via an immobilized metal-ion affinity chromatography (IMAC). In the present study, we have purified and analyzed two constructs of the heat shock protein HSC70 in the presence or the absence of the His-tag (C30WT-His(+)/C30WT and C30DeltaL-His(+)/C30DeltaL). The oligomerization properties of the constructs were analyzed by size exclusion chromatography (SEC) and analytical ultracentrifugation (AU). Results from SEC analysis indicated that the His-tag promotes the dimerization of C30DeltaL-His(+) but has no effect on the elution profile of C30WT-His(+), compared to their respective untagged forms C30DeltaL and C30WT. These observations were also confirmed by AU analysis which indicates that C30DeltaL is stabilized in the dimeric form in the presence of the His-tag. These results emphasize the need to remove the His-tag before structural characterization of some recombinant proteins.  相似文献   

17.
The Strep-tag II is a nine-amino acid peptide that was developed as an affinity tool for the purification of corresponding fusion proteins on streptavidin columns. The peptide recognizes the same pocket of streptavidin where the natural ligand is normally bound so that biotin or its chemical derivatives can be used for competitive elution. We report here the crystal structures of the streptavidin mutants '1' and '2,' which had been engineered for 10-fold higher affinity towards the Strep-tag II. Both streptavidin mutants carry mutations at positions 44, 45, and 47, that is, in a flexible loop region close to the binding site. The crystal structures of the two apo-proteins and their complexes with the Strep-tag II peptide were refined at resolutions below 2 A. Both in the presence and absence of the peptide, the lid-like loop next to the ligand pocket--comprising residues 45 through 52--adopts an 'open' conformation in all four subunits within the asymmetric unit. The same loop was previously described to be disordered in the wild-type apo-streptavidin and to close over the pocket upon complexation of the natural ligand biotin. Our findings suggest that stabilization of the 'open' loop conformation in the absence of a ligand abolishes the need for conformational rearrangement prior to the docking of the voluminous peptide. Because no direct contacts between the flexible part of the loop and the peptide ligand were detected, it seems likely that the higher affinity of the two streptavidin mutants for the Strep-tag II is caused by a predominantly entropic mechanism.  相似文献   

18.
The human peripheral cannabinoid receptor (CB2) was expressed as a fusion with the maltose-binding protein (at the N-terminus), thioredoxin A (at the C-terminus) and two small affinity tags (a Strep-tag and a polyhistidine tag). Expression levels of the recombinant receptor in Escherichia coli BL21(DE3) cells were dependent on location and type of tags in the expression construct, and were as high as 1-2mg per liter of bacterial culture. The recombinant receptor was ligand binding-competent, and activated cognate G-proteins in an in vitro coupled assay. The fusion CB2-125 protein was purified by immobilized metal affinity chromatography on a Ni-NTA resin. Maltose-binding protein, thioredoxin and a decahistidine tag were removed from the fusion by treatment with Tobacco etch virus (Tev) protease. Purification to over 90% homogeneity of the resulting CB2, containing an N-terminal Strep-tag was achieved by affinity chromatography on a StrepTactin resin. Circular dichroism spectroscopy indicated an alpha-helical content of the purified recombinant protein of approximately 54%. The expression and purification protocol allows for production of large (milligram) quantities of functional peripheral cannabinoid receptor, suitable for subsequent structural characterization. Preliminary results of reconstitution experiments indicate that the CB2 has retained its ligand-binding properties.  相似文献   

19.
20.
When delipidated Mr>10,000 cut-off human fetal lung cytosol was separated on gel filtration and ion-exchange chromatography on Auto-FPLC system, two fatty acid-binding proteins (FABPs) of pI 6.9 and pI 5.4 were purified to homogeneity. On Western blotting analysis with the anti-human fetal lung pI 6.9 FABP, these two proteins showed immunochemical cross reactivity with each other and with purified hepatic FABPs but not with cardiac or gut FABP. These two FABPs have identical molecular mass of 15.2 kDa, which is slightly higher than that of the hepatic proteins (14.2 kDa). Carbohydrate covalently linked to FABPs, that may substantially add to the molecular mass, was not detected in the purified protein preparations. Amino acid analysis revealed that both the proteins have same amino acid composition each containing one Trp residue that is lacking in hepatic FABP. Different isoforms of lung FABP exhibited different binding ability for their natural ligands. These proteins bind palmitoyl CoA with higher affinity than oleic acid. pI 6.9 FABP can more rapidly and efficiently transfer fatty acid than can pI 5.4 FABP from unilammelar liposomes. Thus these FABPs may play a critical role in fatty acid transport during human fetal lung development.Abbreviations AO anthroyloxy - 12-AS 12-(9-anthroyloxy)stearic acid - FABP fatty acid-binding protein - NBD-PE [N-(4-nitrobenzo-2-oxa-1,3-diazole)phosphatidylethanolamine - Pal-CoA palmitoyl coenzyme A - PITC phenylisothiocyanate - PBS phosphate-buffered saline - PtdCho phosphatidylcholine - SUV small unilamellar vesicle - Tris tris(hydroxymethyl) amino methane  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号