首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The addition of tert-butyl hydroperoxide (t-BuOOH) to isolated mitochondria resulted in oxidation of approximately 80% of the mitochondrial reduced glutathione (GSH) independently of the dose of t-BuOOH (1-5 mM). Concomitant with the oxidation of GSH inside the mitochondria was the formation of GSH-protein mixed disulfides (protein-SSG), with approximately 1% of the mitochondrial protein thiols involved. A dose-dependent rate of GSH recovery was observed, via the reduction of oxidized GSH (GSSG) and a slower reduction of protein-SSG. Although t-BuOOH administration affected the respiratory control ratio, the mitochondria remained coupled and loss of the matrix enzyme, citrate synthase, was not increased over the control and was less than 3% over 60 min. A slow loss of GSH out of the coupled non-treated mitochondria was not increased by t-BuOOH treatment, in fact, a dose-dependent drop of GSH levels occurred in the medium. However, no GSSG was found outside the mitochondria, indicating the necessary involvement of enzymes in the t-BuOOH-induced conversion of GSH to GSSG. The absence of GSSG in the medium also suggests that, unlike the plasma membrane, the mitochondrial membranes do not have the ability to export GSSG as a response to oxidative stress. Our results demonstrate the inability of mitochondria to export GSSG during oxidative stress and may explain the protective role of mitochondrial GSH in cytotoxicity.  相似文献   

3.
Tricyclodecan-9-yl-xanthogenate (D609) is an inhibitor of phosphatidylcholine-specific phospholipase C, and this agent also has been reported to protect rodents against oxidative damage induced by ionizing radiation. Previously, we showed that D609 mimics glutathione (GSH) functions and that a disulfide is formed upon oxidation of D609 and the resulting dixanthate is a substrate for GSH reductase, regenerating D609. Considerable attention has been focused on increasing the intracellular GSH levels in many diseases, including Alzheimer's disease (AD). Amyloid β-peptide [Aβ(1-42)], elevated in AD brain, is associated with oxidative stress and toxicity. The present study aimed to investigate the protective effects of D609 on Aβ(1-42)-induced oxidative cell toxicity in cultured neurons. Decreased cell survival in neuronal cultures treated with Aβ(1-42) correlated with increased free radical production measured by dichlorofluorescein fluorescence and an increase in protein oxidation (protein carbonyl, 3-nitrotyrosine) and lipid peroxidation (4-hydroxy-2-nonenal) formation. Pretreatment of primary hippocampal cultures with D609 significantly attenuated Aβ(1-42)-induced cytotoxicity, intracellular ROS accumulation, protein oxidation, lipid peroxidation and apoptosis. Methylated D609, with the thiol functionality no longer able to form the disulfide upon oxidation, did not protect neuronal cells against Aβ(1-42)-induced oxidative stress. Our results suggest that D609 exerts protective effects against Aβ(1-42) toxicity by modulating oxidative stress. These results may be of importance for the treatment of AD and other oxidative stress-related diseases.  相似文献   

4.
Quercetin, a flavonoid found in various foodstuffs, has antioxidant properties and increases glutathione (GSH) levels and antioxidant enzyme function. Considerable attention has been focused on increasing the intracellular GSH levels in many diseases, including Alzheimer's disease (AD). Amyloid beta-peptide [Abeta(1-42)], elevated in AD brain, is associated with oxidative stress and neurotoxicity. We aimed to investigate the protective effects of quercetin on Abeta(1-42)-induced oxidative cell toxicity in cultured neurons in the present study. Decreased cell survival in neuronal cultures treated with Abeta(1-42) correlated with increased free radical production measured by dichlorofluorescein fluorescence and an increase in protein oxidation (protein carbonyl, 3-nitrotyrosine) and lipid peroxidation (protein-bound 4-hydroxy-2-nonenal). Pretreatment of primary hippocampal cultures with quercetin significantly attenuated Abeta(1-42)-induced cytotoxicity, protein oxidation, lipid peroxidation and apoptosis. A dose-response study suggested that quercetin showed protective effects against Abeta(1-42) toxicity by modulating oxidative stress at lower doses, but higher doses were not only non-neuroprotective but also toxic. These findings provide motivation to test the hypothesis that quercetin may provide a promising approach for the treatment of AD and other oxidative-stress-related neurodegenerative diseases.  相似文献   

5.
Abstract: Four biomarkers of neuronal protein oxidation [W/S ratio of MAL-6 spin-labeled synaptosomes, phenylhydrazine-reactive protein carbonyl content, glutamine synthetase (GS) activity, creatine kinase (CK) activity] in three brain regions [cerebellum, inferior parietal lobule (IPL), and hippocampus (HIP)] of Alzheimer's disease (AD)-demented and age-matched control subjects were assessed. These endpoints indicate that AD brain protein may be more oxidized than that of control subjects. The W/S ratios of AD hippocampal and inferior parietal synaptosomes are 30 and 46% lower, respectively, than corresponding values of tissue isolated from control brain; however, the difference between the W/S ratios of AD and control cerebellar synaptosomes is not significant. Protein carbonyl content is increased 42 and 37% in the Alzheimer's HIP and IPL regions, respectively, relative to AD cerebellum, whereas carbonyl content in control HIP and IPL is similar to that of control cerebellum. GS activity decreases an average of 27% in the AD brain; CK activity declines by 80%. The brain regional variation of these oxidation-sensitive biomarkers corresponds to established histopathological features of AD (senile plaque and neurofibrillary tangle densities) and is paralleled by an increase in immunoreactive microglia. These data indicate that senile plaque-dense regions of the AD brain may represent environments of elevated oxidative stress.  相似文献   

6.
Pyridine nucleotides are critical during oxidative stress due to their roles in reductive reactions and energetics. The aim of the present study was to examine pyridine nucleotide changes in six brain regions of mice after an intracerebroventricular injection of the oxidative stress inducing agent, t-butyl hydroperoxide (t-BuOOH). A secondary aim was to investigate the correlation between NAD+ levels and DNA fragmentation. Here, we demonstrate that t-BuOOH induced a rapid oxidation of NADPH and a slow depletion of NAD+ in most brain regions. A slight increase in NADH also occurred in five brain regions. NAD+ depletion was associated with increased DNA fragmentation. This suggests the initiation of a death cascade involving poly(ADP-ribose) polymerase (PARP), NAD+, ATP depletion and consequent cell death in brain tissue. PARP activity was accelerated in some brain regions after 20 min of oxidative stress. To counteract oxidative stress induced toxicity, NAD+ levels were increased in the brain using an intraperitoneal injection of nicotinamide. A surplus of brain NAD+ prevented DNA fragmentation in some brain regions. Nicotinamide administration also resulted in higher brain NADH, NADP+ and NADPH levels in some regions. Their synthesis was further upregulated during oxidative stress. Nicotinamide as a precursor for NAD+ may provide a useful therapeutic strategy in the treatment of neurodegeneration.  相似文献   

7.
Previous studies have shown that the pathophysiology of Alzheimer's disease (AD) is linked to oxidative stress. Oxidative damage to different biomolecular components of the brain is a characteristic feature of AD. Recent evidence suggests that methionine may act as an antioxidant defense molecule in proteins by its ability to scavenge oxidants and, in the process, undergo oxidation to form methionine sulfoxide. The enzyme peptide, methionine sulfoxide reductase (MsrA), reverses methionine sulfoxide back to methionine, which once again is able to scavenge oxidants. The purpose of this study was to measure the activity of MsrA in the brain of AD patients compared with control subjects. Our results showed that there was a decline in MsrA activity in all brain regions studied in AD and this decline reached statistical significance in the superior and middle temporal gyri (p < 0.001), inferior parietal lobule (p < 0.05), and the hippocampus (p < 0.05) in AD. An elevation of protein carbonyl content was found in all brain regions except the cerebellum in AD and reached statistical significance in the superior and middle temporal gyri and hippocampus. Messenger RNA analysis suggests that the loss in enzyme activity may be the result of a posttranslational modification of MsrA or a defect of translation resulting in inferior processing of the MsrA mRNA. Our results suggest that a decline in MsrA activity could reduce the antioxidant defenses and increase the oxidation of critical proteins in neurons in the brain in AD.  相似文献   

8.
Ketoacid oxidation in rat liver mitochondria was very sensitive to t-butyl hydroperoxide (t-BuOOH). Furthermore, 2-oxoglutarate and pyruvate each enhanced t-BuOOH-induced oxidative stresses of mitochondria, such as oxidation of pyridine nucleotides and GSH, inhibition of respiration with the other NAD-linked substrates, and peroxidation of mitochondrial lipids. We provide evidence that the t-BuOOH and ketoacid-induced effects are due to the failure of supply of NADH by 2-oxoglutarate dehydrogenase, and report the inactivation of the dehydrogenase in mitochondria by simultaneous addition of 2-oxoglutarate and t-BuOOH. Using the purified enzyme, we confirmed that t-BuOOH-induced inactivation of 2-oxoglutarate dehydrogenase was enhanced by its substrate and thiamine pyrophosphate protected the dehydrogenase from the inactivation. In contrast, succinate-dependent oxidation of mitochondria was not only scarcely affected by t-BuOOH, but also succinate protected against inactivation of 2-oxoglutarate dehydrogenase by t-BuOOH in mitochondria.  相似文献   

9.
A general glutathione (GSH) deficiency occurs in many tissues of the aging mouse. However, there is no information on GSH in the aging brain even though it has been involved in a number of neurobiologic reactions. To this end, C57BL/6 mice, 3-31 months old, representing the growth, maturation, and aging periods of the life-span were studied. Brain cortex, hippocampus, and stem samples were dissected, processed, and analyzed specifically for reduced and oxidized glutathione (GSH, GSSG) and cyst(e)ine using high performance liquid chromatography with dual electrochemical detection. The GSH content of each brain region varied in the order brain cortex greater than brain hippocampus greater than brainstem. However, the GSH profiles of all regions were the same through the life-span, namely, high values during growth dropping to a maturation plateau and then decreasing 30% during aging. In contrast to GSH, the order of cysteine levels was brain cortex less than brain hippocampus less than brainstem and no life-span changes occurred in any region. In addition, the brain GSSG and cystine contents of all regions were very low and did not change during the life-span. Thus, the GSH loss was not accountable by oxidation to GSSG or degradation to cyst(e)ine. Altogether these results demonstrated a GSH deficiency in brain tissues of aging mice like that found previously in other tissues. These findings suggest an increased susceptibility of the aging brain to oxidative damage.  相似文献   

10.
Hepatic ischemia-reperfusion (IR) injury, a major clinical drawback during surgery, is abolished by L-3,3',5-triiodothyronine (T(3)) administration. Considering that the triggering mechanisms are unknown, the aim of this study is to assess the role of oxidative stress in T(3) preconditioning using N-acetylcysteine (NAC) before T(3) administration. Male Sprague-Dawley rats given a single dose of 0.1 mg of T(3)/kg were subjected to 1 h ischemia followed by 20 h reperfusion, in groups of animals pretreated with 0.5 g of NAC/kg 0.5 h before T(3) or with the respective control vehicles. At the end of the reperfusion period, blood and liver samples were taken for analysis of serum aspartate aminotransferase (AST) and hepatic histology, glutathione (GSH) and protein carbonyl contents, and nuclear factor-kappaB (NF-kappaB) and activating protein 1 (AP-1) DNA binding. The IR protocol used led to a 4.5-fold increase in serum AST levels and drastic changes in liver histology, with significant GSH depletion and enhancement of protein carbonyl levels and of the protein carbonyl/GSH content ratio, whereas NF-kappaB and AP-1 DNA binding was decreased and enhanced, respectively. In a time window of 48 h, T(3) exerted protection against hepatic IR injury, with 88% reduction in the protein carbonyl/GSH ratio and normalization of NF-kappaB and AP-1 DNA binding, changes that were suppressed by NAC administration before T(3). Data presented suggest that a transient increase in the oxidative stress status of the liver is an important trigger for T(3) preconditioning, evidenced in a warm IR injury model through antioxidant intervention.  相似文献   

11.
Bacopa monnieri (BM), an ayurvedic medicinal herb is widely known for its memory enhancing ability and improvement of brain function. In this study, we tested the hypothesis that BM extract (BME) could offset neurotoxicant-induced oxidative dysfunctions in developing brain in a rotenone (ROT) mouse model. Pretreatment of dopaminergic (N27 cell lines) cells with BME exhibited significant cytoprotective effect as evidenced by the attenuation of ROT-induced oxidative stress and cell death. Further, the neuroprotective efficacy of BME was assessed in prepubertal mice administered ROT (i.p. 1.0 mg/kg b.w./day) for 7 days. BME treatment significantly offset ROT-induced oxidative damage in striatum (St) and other brain regions as evident by the normalized levels of oxidative markers (malondialdehyde, ROS levels, and hydroperoxides) and restoration of depleted GSH levels. Further, BME effectively normalized the protein carbonyl content in all brain regions suggesting its ability to prevent protein oxidation. Furthermore, BME treatment restored the activity levels of cytosolic antioxidant enzymes, neurotransmitter function, and dopamine levels in St. Based on our findings, we hypothesize that the neuroprotective effects of BM extract may be at least in part related to its ability to enhance reduced glutathione and antioxidant defenses in brain regions. It is suggested that BM may be effectively exploited as a prophylactic/therapeutic adjuvant for neurodegenerative disorders involving oxidative stress.  相似文献   

12.
Oxidative stress has been implicated in the etiology of Parkinson's disease (PD). The important biochemical features of PD, being profound deficit in dopamine (DA) content, reduced glutathione (GSH), and enhanced lipid peroxidation (LPO) in dopaminergic (DA-ergic) neurons resulting in oxidative stress, mitochondrial dysfunction and apoptosis. Rotenone-induced neurotoxicity is a well acknowledged preclinical model for studying PD in rodents as it produces selective DA-ergic neuronal degeneration. In our previous study, we have shown that chronic administration of rotenone to rats is able to produce motor dysfunction, which increases progressively with rotenone treatment and centrophenoxine (CPH) co-treatment is able to attenuate these motor defects. The present study was carried out to evaluate the antioxidant potential of CPH against rotenone-induced oxidative stress. Chronic administration of rotenone to SD rats resulted in marked oxidative damage in the midbrain region compared to other regions of the brain and CPH co-treatment successfully attenuated most of these changes. CPH significantly attenuated rotenone-induced depletion in DA, GSH and increase in LPO levels. In addition, the drug prevented the increase in nitric oxide (NO) and citrulline levels and also enhanced the activity of catalase and superoxide dismutase (SOD). Histological analysis carried out using hematoxylin and eosin staining has indicated severe damage to mid brain in comparison to cortex and cerebellum and this damage is attenuated by CPH co-treatment. Our results strongly indicate the possible therapeutic potential of centrophenoxine as an antioxidant in Parkinson's disease and other movement disorders where oxidative stress is a key player in the disease process.  相似文献   

13.
Oxidative stress may be a hallmark of several neurodegenerative disorders, including Alzheimer's disease (AD) Huntington's, and Parkinson's diseases as well as amyotrophic lateral sclerosis. Acrolein is a highly reactive product of lipid peroxidation that is elevated in the brains of persons with AD. This alkenal potentially can react with proteins by Michael addition to alter their structure and function. In the present study, we used electron paramagnetic resonance in conjunction with a protein-specific spin label to monitor synaptosomal membrane protein conformational alterations induced by acrolein. A dose-dependent increased conformational alteration was observed. Consistent with this finding, protein carbonyl levels from protein-bound acrolein were significantly elevated. However, pretreatment of synaptosomes with glutathione ethyl ester (GEE) significantly ameliorated both the conformational alterations and protein carbonyls induced by acrolein. Based on this success, we tested the hypothesis that elevated levels of endogenous glutathione (GSH) would offer protection against acrolein-induced oxidative stress. In-vivo elevation of GSH (215% over control, P<0.04) was produced by i.p. injection of N-acetylcysteine (NAC), a known precursor of GSH. Synaptosomes were treated with vehicle or 2 nM acrolein, the level of this alkenal found in AD brain. In contrast to synaptosomes from control animals, which had significantly increased protein carbonyl levels following addition of 2 nM acrolein, synaptosomes that were isolated from NAC-treated rodents and treated with 2 nM acrolein showed no increased carbonyl levels compared to untreated controls. These results demonstrate protection by increased in-vivo GSH levels against acrolein-induced oxidative stress at levels found in AD brain and are consistent with the notion that methods to increase endogenous GSH levels in neurodegenerative diseases associated with oxidative stress may be promising.  相似文献   

14.
Intermittent hypoxia (IH) has been found to protect brain from ischemic injury. We investigated whether IH mitigates brain oxidative stress and behavioral deficits in rats subjected to ethanol intoxication and abrupt ethanol withdrawal (EW). The effects of IH on overt EW behavioral signs, superoxide generation, protein oxidation, and mitochondrial permeability transition pore (PTP) opening were examined. Male rats consumed dextrin or 6.5% (wt/vol) ethanol for 35 days. During the last 20 days, rats were treated with repetitive (5-8 per day), brief (5-10 min) cycles of hypoxia (9.5-10% inspired O2) separated by 4-min normoxia exposures. Cerebellum, cortex, and hippocampus were biopsied on day 35 of the diet or at 24 h of EW. Superoxide and protein carbonyl contents in tissue homogenates and absorbance decline at 540 nm in mitochondrial suspensions served as indicators of oxidative stress, protein oxidation, and PTP opening, respectively. Although IH altered neither ethanol consumption nor blood ethanol concentration, it sharply lowered the severity of EW signs including tremor, tail rigidity, and startle response. Compared with dextrin and ethanol per se, in the three brain regions, EW increased superoxide and protein carbonyl contents and accelerated PTP opening in a manner ameliorated by IH. Administration of antioxidant N-acetylcysteine throughout the IH program abrogated the reductions in EW signs and superoxide content, implicating IH-induced ROS as mediators of the salutary adaptations. We conclude that IH conditioning during chronic ethanol consumption attenuates oxidative damage to the brain and mitigates behavioral abnormalities during subsequent EW. IH-induced ROS may evoke this powerful protection.  相似文献   

15.
Neonatal female and male rats were exposed to airborne manganese sulfate (MnSO4) during gestation and postnatal d 1–18. Three weeks post-exposure, rats were killed and we assessed biochemical end points indicative of oxidative stress in five brain regions: cerebellum, hippocampus, hypothalamus, olfactory bulb, and striatum. Glutamine synthetase (GS) protein levels, metallothionein (MT) and GS mRNA levels, and total glutathione (GSH) levels were determined for all five regions. Overall, there was a statistically significant effect of manganese exposure on decreasing brain GS protein levels (p=0.0061), although only the highest dose of manganese (1 mg Mn/m3) caused a significant increase in GS messenger RNA (mRNA) in both the hypothalamus and olfactory bulb of male rats and a significant decrease in GS mRNA in the striatum of female rats. This highest dose of manganese had no effect on MT mRNA in either males or females; however, the lowest dose (0.05 mg Mn/m3) decreased MT mRNA in the hippocampus, hypothalamus, and striatum in males. The median dose (0.5 mg Mn/m3) led to decreased MT mRNA in the hippocampus and hypothalamus of the males and olfactory bulb of the females. Overall, manganese exposure did not affect total GSH levels, a finding that is contrary to those in our previous studies. Only the cerebellum of manganese-exposed young male rats showed a significant reduction (p<0.05) in total GSH levels compared to control levels. These data reveal that alterations in biomarkers of oxidative stress resulting from in utero and neonatal exposures of airborne managanese remain despite 3 wk of recovery; however, it is important to note that the doses of manganese utilized represent levels that are 100-fold to a 1000-fold higher than the inhalation reference concentration set by the US Environmental Protection Agency.  相似文献   

16.
Oxidative stress and mitochondrial damage are implicated in the evolution of neurodegenerative diseases. Increased oxidative damage in specific brain regions during aging might render the brain susceptible to degeneration. Previously, we demonstrated increased oxidative damage and lowered antioxidant function in substantia nigra during aging making it vulnerable to degeneration associated with Parkinson's disease. To understand whether aging contributes to the vulnerability of brain regions in Alzheimer's disease, we assessed the oxidant and antioxidant markers, glutathione (GSH) metabolic enzymes, glial fibrillary acidic protein (GFAP) expression and mitochondrial complex I (CI) activity in hippocampus (HC) and frontal cortex (FC) compared with cerebellum (CB) in human brains with increasing age (0.01-80 years). We observed significant increase in protein oxidation (HC: p = 0.01; FC: p = 0.0002) and protein nitration (HC: p = 0.001; FC: p = 0.02) and increased GFAP expression (HC: p = 0.03; FC: p = 0.001) with a decreasing trend in CI activity in HC and FC compared to CB with increasing age. These changes were associated with a decrease in antioxidant enzyme activities, such as superoxide dismutase (HC: p = 0.005), catalase (HC: p = 0.02), thioredoxin reductase (FC: p = 0.04), GSH reductase (GR) (HC: p = 0.005), glutathione-s-transferase (HC: p = 0.0001; FC: p = 0.03) and GSH (HC: p = 0.01) with age. However, these parameters were relatively unaltered in CB. We suggest that the regions HC and FC are subjected to widespread oxidative stress, loss of antioxidant function and enhanced GFAP expression during aging which might make them more susceptible to deranged physiology and selective neuronal degeneration.  相似文献   

17.
Oxidative stress has been shown to underlie neuropathological aspects of Alzheimer's disease (AD). 4-Hydroxy-2-nonenal (HNE) is a highly reactive product of lipid peroxidation of unsaturated lipids. HNE-induced oxidative toxicity is a well-described model of oxidative stress-induced neurodegeneration. GSH plays a key role in antioxidant defense, and HNE exposure causes an initial depletion of GSH that leads to gradual toxic accumulation of reactive oxygen species. In the current study, we investigated whether pretreatment of cortical neurons with acetyl-L-carnitine (ALCAR) and alpha-lipoic acid (LA) plays a protective role in cortical neuronal cells against HNE-mediated oxidative stress and neurotoxicity. Decreased cell survival of neurons treated with HNE correlated with increased protein oxidation (protein carbonyl, 3-nitrotyrosine) and lipid peroxidation (HNE) accumulation. Pretreatment of primary cortical neuronal cultures with ALCAR and LA significantly attenuated HNE-induced cytotoxicity, protein oxidation, lipid peroxidation, and apoptosis in a dose-dependent manner. Additionally, pretreatment of ALCAR and LA also led to elevated cellular GSH and heat shock protein (HSP) levels compared to untreated control cells. We have also determined that pretreatment of neurons with ALCAR and LA leads to the activation of phosphoinositol-3 kinase (PI3K), PKG, and ERK1/2 pathways, which play essential roles in neuronal cell survival. Thus, this study demonstrates a cross talk among the PI3K, PKG, and ERK1/2 pathways in cortical neuronal cultures that contributes to ALCAR and LA-mediated prosurvival signaling mechanisms. This evidence supports the pharmacological potential of cotreatment of ALCAR and LA in the management of neurodegenerative disorders associated with HNE-induced oxidative stress and neurotoxicity, including AD.  相似文献   

18.
Increasing evidence supports the role of excitotoxicity in neuronal cell injury. Thus, it is extremely important to explore methods to retard or reverse excitotoxic neuronal injury. In this regard, certain dietary compounds are beginning to receive increased attention, in particular those involving phytochemicals found in medicinal plants in alleviating neuronal injury. In the present study, we examined whether medicinal plant extracts protect neurons against excitotoxic lesions induced by kainic acid (KA) in female Swiss albino mice. Mice were anesthetized with ketamine and xylazine (200 mg and 2 mg/kg body wt. respectively) and KA (0.25 microg in a volume of 0.5 microl) was administered to mice by intra hippocampal injections. The results showed an impairment of the hippocampus region of brain after KA injection. The lipid peroxidation and protein carbonyl content were significantly (P < 0.05) increased in comparison to controls. Glutathione peroxidase (GPx) activity (EC 1.11.1.9) and reduced glutathione (GSH) content declined after appearance of excitotoxic lesions. As GPx and GSH represent a major pathway in the cell for metabolizing hydrogen peroxide (H2O2), their depletion would be expected to allow H2O2 to accumulate to toxic levels. Dried ethanolic plant extracts of Withania somnifera (WS), Convolvulus pleuricauas (CP) and Aloe vera (AV) dissolved in distilled water were tested for their total antioxidant activity. The diet was prepared in terms of total antioxidant activity of plant extracts. The iron (Fe3+) reducing activity of plant extracts was also tested and it was found that WS and AV were potent reductants of Fe3+ at pH 5 5. CP had lower Fe3+ reducing activity in comparison to WS and AV. Plant extracts given singly and in combination 3 weeks prior to KA injections resulted in a decrease in neurotoxicity. Measures of lipid peroxidation and protein carbonyl declined. GPx activity and GSH content were elevated in hippocampus supplemented with WS and combination of WS + CP + AV. However, when CP and AV were given alone, the changes in the GPx activity and GSH content were not significant. Although the major factors involved in these properties of phytochemicals remain to be specified, the finding of this study has suggested that phytochemicals present in plant extracts mitigate the effects of excitotoxicity and oxidative damage in hippocampus and this might be accomplished by their antioxidative properties.  相似文献   

19.
Abstract: The dopaminergic phenotype of neurons in human substantia nigra deteriorates during normal aging, and loss of these neurons is prominent in Parkinson's disease. These degenerative processes are hypothesized to involve oxidative stress. To compare oxidative stress in the nigra and related regions, we measured carbonyl modifications of soluble proteins in postmortem samples of substantia nigra, basal ganglia, and prefrontal cortex from neurologically normal subjects, using an improved 2,4-dinitrophenylhydrazine assay. The protein carbonyl content was found to be about twofold higher in substantia nigra pars compacta than in the other regions. To further analyze this oxidative damage, the distribution of carbonyl groups on soluble proteins was determined by western immunoblot analysis. This method revealed that carbonyl content of the major proteins in each region was linearly dependent on molecular weight. This distribution raises the possibility that protein carbonyl content is controlled by a size-dependent mechanism in vivo. Our results suggest that oxidative stress is elevated in human substantia nigra pars compacta in comparison with other regions and that oxidative damage is higher within the dopaminergic neurons. Elevated oxidative damage may contribute to the degeneration of nigral dopaminergic neurons in aging and in Parkinson's disease.  相似文献   

20.
Oxidative modification of creatine kinase BB in Alzheimer's disease brain   总被引:11,自引:0,他引:11  
Creatine kinase (CK) BB, a member of the CK gene family, is a predominantly cytosolic CK isoform in the brain and plays a key role in regulation of the ATP level in neural cells. CK BB levels are reduced in brain regions affected by neurodegeneration in Alzheimer's disease (AD), Pick's disease, and Lewy body dementia, and this reduction is not a result of decreased mRNA levels. This study demonstrates that posttranslational modification of CK BB plays a role in the decrease of CK activity in AD brain. The specific CK BB activity and protein carbonyl content were determined in brain extracts of six AD and six age-matched control subjects. CK BB activity per microgram of immunoreactive CK BB protein was lower in AD than in control brain extracts, indicating the presence of inactive CK BB molecules. The analysis of specific protein carbonyl levels in CK BB, performed by two-dimensional fingerprinting of oxidatively modified proteins, identified CK BB as one of the targets of protein oxidation in the AD brain. The increase of protein carbonyl content in CK BB provides evidence that oxidative posttranslational modification of CK BB plays a role in the loss of CK BB activity in AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号