首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The reported cDNA structrre, of chicken smooth muscle myosin light chain kinase (smMLCK) encodes a protein of 972 residues (Olsonet al. Proc. Natl. Acad. Sci USA, 87: 2284–2288, 1990). The calculated Mr is 107, 534 whereas the estimate by SDS-PAGE is approximately 130, 000. Gibson and Higgins (DNA Sequence (in press)) have recently reported the possibility of errors, in the cDNA sequence for non-muscle MLCK and that the NH2-terminus of both it and smMLCK may extend beyond the reported coding region. The native smMLCK is NH2-terminally blocked. A CNBr peptide derived from smMLCK contains the NH2-terminal sequence Asp-Phe-Arg-Ala corresponding to residues 2 to 4 in the smMLCK sequence indicating, that Met-1 is present. Using a limited thermolysin digest we isolated an NH2-terminally blocked peptide by reversed-phase HPLC. This thermolytic peptide had a mass of approximately 797 by time of flight mass spectrometry. Amino acid analysis and Edman sequencing of a CNBr-subfragment of the thermolytic peptide indicated that it had the composition and sequence, (Met)-Asp-Phe-Arg-Ala-Asn, with a calculated mass of 753. The difference in mass corresponds to the NH2-terminal Met being blocked by actylation. The results demonstrate that the NH2-terminal sequence of smMLCK inferred from the reported cDNA sequence is correct and that the proposed initiating, Met is not removed, but modified by -NH2 acetylation of the translation product.  相似文献   

2.
3.
4.
Developmental changes in the regulation of smooth muscle contraction were examined in urinary bladder smooth muscle from mice. Maximal active stress was lower in newborn tissue compared with adult, and it was correlated with a lower content of actin and myosin. Sensitivity to extracellular Ca2+ during high-K+ contraction, was higher in newborn compared with 3-wk-old and adult bladder strips. Concentrations at half maximal tension (EC50) were 0.57 +/- 0.01, 1.14 +/- 0.12, and 1.31 +/- 0.08 mM. Force of the newborn tissue was inhibited by approximately 45% by the nonmuscle myosin inhibitor Blebbistatin, whereas adult tissue was not affected. The calcium sensitivity in newborn tissue was not affected by Blebbistatin, suggesting that nonmuscle myosin is not a primary cause for increased calcium sensitivity. The relation between intracellular [Ca2+] and force was shifted toward lower [Ca2+] in the newborn bladders. This increased Ca2+ sensitivity was also found in permeabilized muscles (EC50: 6.10 +/- 0.07, 5.77 +/- 0.08, and 5.55 +/- 0.02 pCa units, in newborn, 3-wk-old, and adult tissues). It was associated with an increased myosin light chain phosphorylation and a decreased rate of dephosphorylation. No difference was observed in the myosin light chain phosphorylation rate, whereas the rate of myosin light chain phosphatase-induced relaxation was about twofold slower in the newborn tissue. The decreased rate was associated with a lower expression of the phosphatase regulatory subunit MYPT-1 in newborn tissue. The results show that myosin light chain phosphatase activity can be developmentally regulated in mammalian urinary bladders. The resultant alterations in Ca2+ sensitivity may be of importance for the nervous and myogenic control of the newborn bladders.  相似文献   

5.
The expression of smooth muscle myosin light chain kinase (MLCK) was investigated during chicken gizzard development. The molecular weight and the antigenic properties of MLCK did not change during development. The use of anion exchange high performance liquid chromatography (HPLC) enabled us to distinguish between MLCKs from post-hatched and adult chickens. A partial amino acid sequence determination of 4-day-old gizzard MLCK failed to disclose differences in the primary sequences of the two proteins. The results suggest that MLCK has the same primary sequence in all sequences of the two proteins. The results suggest that MLCK has the same primary sequence in all stages of gizzard development, although charge variants due to post-translational modifications may exist.  相似文献   

6.
The temporal relationship between Ca2+-induced contraction and phosphorylation of 20 kDa myosin light chain (MLC) during a step increase in Ca2+ was investigated using permeabilized phasic smooth muscle from rabbit portal vein and guinea-pig ileum at 25°C. We describe here a Ca2+-induced Ca2+ desensitization phenomenon in which a transient rise in MLC phosphorylation is followed by a transient rise in contractile force. During and after the peak contraction, the force to phosphorylation ratio remained constant. Further treatment with cytochalasin D, an actin fragmenting agent, did not affect the transient increase in phosphorylation, but blocked force development. Together, these results indicate that the transient phosphorylation causes the transient contraction and that neither inhomogeneous contractility nor reduced thin filament integrity effects the transient phosphorylation. Lastly, we show that known inhibitors to MLC kinase kinases and to a Ca2+-dependent protein phosphatase did not eliminate the desensitized contractile force. This study suggests that the Ca2+-induced Ca2+ desensitization phenomenon in phasic smooth muscle does not result from any of the known intrinsic mechanisms involved with other aspects of smooth muscle contractility.  相似文献   

7.
M G Tansey  M Hori  H Karaki  K E Kamm  J T Stull 《FEBS letters》1990,270(1-2):219-221
Tracheal smooth muscle precontracted with carbachol relaxes upon the addition of 3 μM okadaic add. Although cytosolic Ca2+ concentrations decrease, myosin light chain remains highly phosphorylated (50%). In smooth muscle treated with carbachol alone or carbachol plus okadaic acid 32P is incorporated into a single peptide on myosin light chain which corresponds to the site phosphorylated by myosin light chain kinase. Treatment with okadaic acid alone does not result in myosin light chain phosphorylation or tension development. These results suggest that a cellular mechanism other than myosin light chain phosphorylation can regulate contractile tension.  相似文献   

8.
Phosphorylation of the regulatory light chain of myosin II by myosinlight chain kinase is important for regulating many contractile processes.Smooth muscle myosin light chain kinase has been shown to be associated withboth actin and myosin filaments in vitro and in vivo. In this report wedefine an actin binding region by using molecular deletions to generaterecombinant mutant proteins that were analyzed by co-sedimentation withF-actin. An actin binding region restricted to residues 2-42 in the animoterminus of the rabbit smooth muscle myosin light chain kinase wasidentified.  相似文献   

9.
Many non-muscle cells including chromaffin cells contain actin and myosin. The 20,000 dalton light chain subunits of myosin can be phosphorylated by a Ca2+/calmodulin-dependent enzyme, myosin light chain kinase. In tissues other than striated muscle, light chain phosphorylation is required for actin-induced myosin ATPase activity. The possibility that actin and myosin are involved in catecholamine secretion was investigated by determining whether increased phosphorylation in the presence of [-32P]ATP of myosin light chain by myosin light chain kinase enhances secretion from digitonin-treated chromaffin cells. In the absence of exogenous myosin light chain kinase, 1 M Ca2+ caused a 30–40% enhancement of the phosphorylation of a 20 kDa protein. This protein was identified on 2-dimensional gels as myosin light chain by its comigration with purified myosin light chain. Purified myosin light chain kinase (400 g/ml) in the presence of calmodulin (10 M) caused little or no enhancement of myosin light chain phosphorylation in the absence of Ca2+ in digitonin-treated cells. In the presence of 1 M Ca2+, myosin light chain kinase (400 g/ml) caused an approximately two-fold increase in myosin light chain phosphorylation in digitonin-treated cells in 5 min. The phosphorylation required permeabilization of the cells by digitonin and occurred within the cells rather than in the medium. Myosin light chain kinase-induced phosphorylation of myosin light chain was maximal at 1 M. Ca2+. Under identical conditions to those of the phosphorylation experiments, secretion was unaltered by myosin light chain kinase. The experiments indicate that the phosphorylation of myosin light chain by myosin light chain kinase is not a limiting factor in secretion in digitonin-treated chromaffin cells and suggest that the activation of myosin is not directly involved in secretion from the cells. The experiments also demonstrate the feasibility of investigation of effects of exogenously added proteins on secretion in digitonin-treated cells.Abbreviations EGTA ethyleneglycol-bis-(-aminoethyl ether)-N,N,N,N-tetraacetic acid - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - KGEPM solution containing potassium glutamate, EGTA, PIPES and MgCl2 - NE norepinephrine - PIPES piperazine-N,-N-bis-(2-ethanesulfonic acid) - PSS physiological salt solution  相似文献   

10.
The smooth muscle isoform of myosin light chain kinase (MLCK) is a Ca2+-calmodulin-activated kinase that is found in many tissues. It is particularly important for regulating smooth muscle contraction by phosphorylation of myosin. This review summarizes selected aspects of recent biochemical work on MLCK that pertains to its function in smooth muscle. In general, the focus of the review is on new findings, unresolved issues, and areas with the potential for high physiological significance that need further study. The review includes a concise summary of the structure, substrates, and enzyme activity, followed by a discussion of the factors that may limit the effective activity of MLCK in the muscle. The interactions of each of the many domains of MLCK with the proteins of the contractile apparatus, and the multi-domain interactions of MLCK that may control its behaviors in the cell are summarized. Finally, new in vitro approaches to studying the mechanism of phosphorylation of myosin are introduced.  相似文献   

11.
Phosphorylation on Ser 19 of the myosin II regulatory light chain by myosin light chain kinase (MLCK) regulates actomyosin contractility in smooth muscle and vertebrate nonmuscle cells. The smooth/nonmuscle MLCK gene locus produces two kinases, a high molecular weight isoform (long MLCK) and a low molecular weight isoform (short MLCK), that are differentially expressed in smooth and nonmuscle tissues. To study the relative localization of the MLCK isoforms in cultured nonmuscle cells and to determine the spatial and temporal dynamics of MLCK localization during mitosis, we constructed green fluorescent protein fusions of the long and short MLCKs. In interphase cells, localization of the long MLCK to stress fibers is mediated by five DXRXXL motifs, which span the junction of the NH(2)-terminal extension and the short MLCK. In contrast, localization of the long MLCK to the cleavage furrow in dividing cells requires the five DXRXXL motifs as well as additional amino acid sequences present in the NH(2)-terminal extension. Thus, it appears that nonmuscle cells utilize different mechanisms for targeting the long MLCK to actomyosin structures during interphase and mitosis. Further studies have shown that the long MLCK has twofold lower kinase activity in early mitosis than in interphase or in the early stages of postmitotic spreading. These findings suggest a model in which MLCK and the myosin II phosphatase (Totsukawa, G., Y. Yamakita, S. Yamashiro, H. Hosoya, D.J. Hartshorne, and F. Matsumura. 1999. J. Cell Biol. 144:735-744) act cooperatively to regulate the level of Ser 19-phosphorylated myosin II during mitosis and initiate cytokinesis through the activation of myosin II motor activity.  相似文献   

12.
The function of the uterine smooth muscle in gestation and parturition is affected by a variety of hormones and biomolecules, some of which alter the intracellular levels of cAMP and Ca2+. Since the activity of smooth muscle MLCK has been shown to be modulated by phosphorylation, the effect of this modification of pregnant sheep myometrium (psm) MLCK by the catalytic subunit of cAMP-dependent protein kinase (PKA) and protein kinase C (PKC) was studied. In contrast to other smooth muscle MLCK reported, PKA incorporates 2.0–2.2 moles phosphate into a mole of psm MLCK both in the presence and absence of Ca2+-calmodulin. Modification of serine residues inhibited the activity of the enzyme. PKC also incorporated 2.0–2.1 moles of phosphate per mole psmMLCK under both conditions but had no effect on the MLCK activity. Sequential phosphorylation by PKC and PKA incorporated 3.8–4.1 moles phosphate suggesting that the amino acid residues modified by the two kinases are different. Phosphoamino acid analysis of the MLCK revealed that PKC phosphorylated serine and threonine residues. The double reciprocal plots of the enzyme activity and calmodulin concentrations showed that the Vmax of the reaction is not altered by phosphorylation by PKA but the calmodulin concentration require for half-maximal activation is increased about 4-fold. Only 10 out of 17 monoclonal antibodies to various regions of the turkey gizzard MLCK cross-reacted with psmMLCK suggesting structural differences between these enzymes. Comparison of the deduced amino acid sequence of the cDNA encoding the C-terminal half of the psmMLCK molecule showed that while cgMLCK and psmMLCK are highly homologous, a number of nonconservative substitutions are present, particularly near the PKA phosphrylation site B (S828).  相似文献   

13.
When prepared under specified conditions chicken gizzard myosin was obtained which when incubated with ATP gave rise to a diphosphorylated as well as the monophosphorylated form of P light chain. Formation of the diphosphorylated light chain occurred more readily with these myosin preparations, but could also be obtained by prolonged incubation of the isolated whole light chain fraction with kinase preparations from rabbit skeletal and chicken gizzard muscles. Using isolated light chains as substrate the more readily formed monophosphorylated light chain contained serine phosphate while the diphosphorylated form contained serine and threonine phosphates.  相似文献   

14.
Skeletal muscle myosin light chain kinase (skMLCK) is a dedicated Ca2+/calmodulin-dependent serine–threonine protein kinase that phosphorylates the regulatory light chain (RLC) of sarcomeric myosin. It is expressed from the MYLK2 gene specifically in skeletal muscle fibers with most abundance in fast contracting muscles. Biochemically, activation occurs with Ca2+ binding to calmodulin forming a (Ca2+)4•calmodulin complex sufficient for activation with a diffusion limited, stoichiometric binding and displacement of a regulatory segment from skMLCK catalytic core. The N-terminal sequence of RLC then extends through the exposed catalytic cleft for Ser15 phosphorylation. Removal of Ca2+ results in the slow dissociation of calmodulin and inactivation of skMLCK. Combined biochemical properties provide unique features for the physiological responsiveness of RLC phosphorylation, including (1) rapid activation of MLCK by Ca2+/calmodulin, (2) limiting kinase activity so phosphorylation is slower than contraction, (3) slow MLCK inactivation after relaxation and (4) much greater kinase activity relative to myosin light chain phosphatase (MLCP). SkMLCK phosphorylation of myosin RLC modulates mechanical aspects of vertebrate skeletal muscle function. In permeabilized skeletal muscle fibers, phosphorylation-mediated alterations in myosin structure increase the rate of force-generation by myosin cross bridges to increase Ca2+-sensitivity of the contractile apparatus. Stimulation-induced increases in RLC phosphorylation in intact muscle produces isometric and concentric force potentiation to enhance dynamic aspects of muscle work and power in unfatigued or fatigued muscle. Moreover, RLC phosphorylation-mediated enhancements may interact with neural strategies for human skeletal muscle activation to ameliorate either central or peripheral aspects of fatigue.  相似文献   

15.
Smooth muscle myosin light chain kinase (MLCK) plays a crucial role in artery contraction, which regulates blood pressure and blood flow distribution. In addition to this role, MLCK contributes to Ca2+ flux regulation in vascular smooth muscle (VSM) and in non-muscle cells, where cytoskeleton has been suggested to help Ca2+ channels trafficking. This conclusion is based on the use of pharmacological inhibitors of MLCK and molecular and cellular techniques developed to down-regulate the enzyme. Dissimilarities have been observed between cells and whole tissues, as well as between large conductance and small resistance arteries. A differential expression in MLCK and ion channels (either voltage-dependent Ca2+ channels or non-selective cationic channels) could account for these observations, and is in line with the functional properties of the arteries. A potential involvement of MLCK in the pathways modulating Ca2+ entry in VSM is described in the present review.  相似文献   

16.
Smooth muscle myosin light chain kinase (MLCK) plays a crucial role in artery contraction, which regulates blood pressure and blood flow distribution. In addition to this role, MLCK contributes to Ca2+ flux regulation in vascular smooth muscle (VSM) and in non-muscle cells, where cytoskeleton has been suggested to help Ca2+ channels trafficking. This conclusion is based on the use of pharmacological inhibitors of MLCK and molecular and cellular techniques developed to down-regulate the enzyme. Dissimilarities have been observed between cells and whole tissues, as well as between large conductance and small resistance arteries. A differential expression in MLCK and ion channels (either voltage-dependent Ca2+ channels or non-selective cationic channels) could account for these observations, and is in line with the functional properties of the arteries. A potential involvement of MLCK in the pathways modulating Ca2+ entry in VSM is described in the present review.  相似文献   

17.
The intrinsic ability of vascular smooth muscle cells (VSMCs) within arterial resistance vessels to respectively contract and relax in response to elevation and reduction of intravascular pressure is essential for appropriate blood flow autoregulation. This fundamental mechanism, referred to as the myogenic response, is dependent on apposite control of myosin regulatory light chain (LC20) phosphorylation, a prerequisite for force generation, through the coordinated activity of myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP). Here, we highlight the molecular basis of the smooth muscle contractile mechanism and review the regulatory pathways demonstrated to participate in the control of LC20 phosphorylation in the myogenic response, with a focus on the Ca2+-dependent and Rho-associated kinase (ROK)-mediated regulation of MLCK and MLCP, respectively.  相似文献   

18.
Myofibroblasts generate the contractile force responsible for wound healing and pathological tissue contracture. In this paper the stress-relaxed collagen lattice model was used to study lysophosphatidic acid (LPA)-promoted myofibroblast contraction and the role of the small GTPase Rho and its downstream targets Rho kinase and myosin light chain phosphatase (MLCPPase) in regulating myofibroblast contraction. In addition, the regulation of myofibroblast contraction was compared with that of smooth muscle cells. LPA-promoted myofibroblast contraction was inhibited by the myosin light chain kinase (MLCK) inhibitors KT5926 and ML-7; however, in contrast to that observed in smooth muscle cells, elevation of intracellular calcium alone was not sufficient to promote myofibroblast contraction. These results suggest that Ca(2+)-mediated activation of MLCK, while necessary, is not sufficient to promote myofibroblast contraction. The specific Rho inactivator C3-transferase and the Rho kinase inhibitor Y-27632 inhibited LPA-promoted myofibroblast contraction, suggesting that contraction depends on activation of the Rho/Rho kinase pathway. Calyculin, a type 1 phosphatase inhibitor known to inhibit MLCPPase, could promote myofibroblast contraction in the absence of LPA, as well as restore contraction in the presence of C3-transferase or Y-27632. Together these results support a model whereby Rho/Rho kinase-mediated inhibition of MLCPPase is necessary for LPA-promoted myofibroblast contraction, in contrast to smooth muscle cells in which Ca(2+) activation of MLCK alone is sufficient to promote contraction.  相似文献   

19.
A method is described for rapidly surveying the effects of modifying individual amino acid residues of a protein on its ability to interact specifically with another macromolecule. The procedure has been used to examine the individual roles of the seven lysyl residues of calmodulin in its ability to bind to smooth muscle myosin light chain kinase; previous studies by Jackson et al. (J. Biol. Chem. 261:1226-12232, 1986) have suggested that certain lysines may be located close to the interaction site. Trace [3H]-acetylated calmodulin, consisting predominantly of molecules acetylated at single sites together with unmodified protein, was incubated in excess (five- to 20-fold) with smooth muscle MLC kinase to allow the modified and unmodified molecules to compete for binding to the enzyme. Subsequently, the calmodulin-enzyme complex was separated from unbound calmodulin, and the level of acetylation of each of the seven lysines of the bound fraction of calmodulin was determined and compared to that of each corresponding group of the starting preparation. Significant changes were found at only two of the lysines, 21 and 75, where the extent of acetylation in the bound fraction was three- and fivefold lower, respectively, than that in the original preparation. These results were reproducible in three separate selection experiments employing both chicken and turkey gizzard MLC kinase. It is concluded that acetylation of calmodulin at either lysine 21 or 75 markedly reduces its affinity for MLC kinase, but acetylation at any of the other lysines (13, 30, 77, 94, or 148) has only minor effects.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Approaches with high spatial and temporal resolution are required to understand the regulation of nonmuscle myosin II in vivo. Using fluorescence resonance energy transfer we have produced a novel biosensor allowing simultaneous determination of myosin light chain kinase (MLCK) localization and its [Ca2+]4/calmodulin-binding state in living cells. We observe transient recruitment of diffuse MLCK to stress fibers and its in situ activation before contraction. MLCK is highly active in the lamella of migrating cells, but not at the retracting tail. This unexpected result highlights a potential role for MLCK-mediated myosin contractility in the lamella as a driving force for migration. During cytokinesis, MLCK was enriched at the spindle equator during late metaphase, and was maximally activated just before cleavage furrow constriction. As furrow contraction was completed, active MLCK was redistributed to the poles of the daughter cells. These results show MLCK is a myosin regulator in the lamella and contractile ring, and pinpoints sites where myosin function may be mediated by other kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号