首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 69 毫秒
1.
The thermal fragmentation of human erythrocytes involves either surface wave growth and membrane externalization at the cell rim or membrane internalization at the cell dimple. In symmetrical monovalent electrolytes an increase in membrane internalization at the cell dimple correlates with the decrease in zeta potential arising from surface charge (sialic acid residue) depletion. The influence of divalent cations on thermal fragmentation is examined in this work. The erythrocyte zeta potential decreased when divalent cations replaced some Na+ in the cell-suspending phase. The incidence of membrane internalization increased in rank order Ca2+>Ba2+>Mg2+Sr2+. Calcium continued to influence the thermal fragmentation of cells highly depleted of sialic acid, suggesting that the ion also interacted with membrane sites other than sialic acid. The divalent cation influence on cell fragmentation was shown to be greater than that due to zeta potential decrease alone. This conclusion was supported by the observation that the divalent cation-induced changes in zeta potential showed much less cation specificity than did the changes induced in the thermal fragmentation pattern. The result implies that the specificity of the divalent cation effects was due to interactions within the erythrocyte shear layer. The possibility that the interaction is with membrane lipids is examined.  相似文献   

2.
Dimethylsulfoxide-induced erythrodifferentiation of Friend leukemia cells caused a decrease in net negative cell surface charge which began two days after exposure to the polar solvent and continued throughout the maturation process. Neuraminidase treatment caused a marked reduction in mobility of both untreated and dimethylsulfoxide-treated cells suggesting that sialic acid residues are the major anionogenic moieties of the surface membrane of Friend cells. A decrease in the content of total glycosidically bound sialic acid in dimethylsulfoxide-treated cells also occurred. The findings provide evidence to support an association between erythrodifferentiation of Friend cells and net negative surface charge dependent upon sialic acid residues.  相似文献   

3.
The effects of propranolol (10(-3) mM) on the surface anionic groups of Herpetomonas muscarum muscarum were analysed by cell electrophoresis, by ultrastructural cytochemistry and by identification of sialic acids using paper chromatography. Differentiation of H. muscarum muscarum induced by propranolol treatment caused a significant increase in the net negative surface charge. Binding of cationized ferritin (CF) and colloidal iron hydroxide particles was observed at the cell surface of both untreated and propranolol-treated cells. In cells incubated in the presence of the drug the CF particles were distributed in all membrane regions. However, there were small areas where the particles were absent. In H. muscarum muscarum exposed to propranolol the density of residues of sialic acid per cell was higher, and the agglutinating activity with Sendai virus was more intense. However, the pattern of sialic acid, characterized by the presence of N-acetylneuraminic acid derivative, was not modified upon cell interaction with the drug. Treatment of both control and propranolol-treated protozoa with neuraminidase significantly reduced the surface charge. These findings suggest that sialic acid residues are the major anionogenic groups exposed on the surface of H. muscarum muscarum.  相似文献   

4.
Suzuki Y  Tateishi N  Maeda N 《Biorheology》1998,35(2):155-170
Electrostatic repulsion among erythrocytes in flow was evaluated through measurement of the thickness of the marginal cell-free layer in narrow glass tubes of 20-50 microns in inner diameter. To reduce the electrostatic repulsive force, due mainly to sialic acid of the membrane glycoproteins, human erythrocytes were treated with neuraminidase. The surface negative charge of the erythrocytes, as determined from the electrophoretic mobility using free-flow electrophoresis, was found to be proportional to the sialic acid content. When erythrocytes with decreased sialic acid content flowed through narrow tubes, the thickness of cell-free layer determined using an image processor increased even in the absence of erythrocyte aggregation in the suspension. The effect was more pronounced at acidic pH. The addition of Dextran T-70 (70,400 Mol. Wt.) further increased the cell-free layer thickness due to erythrocyte aggregation. Thus, reducing the negative charge density on the erythrocyte surface by itself accelerates the axial accumulation of erythrocytes in flow due to the decreased electrostatic repulsive force between the cells, even in the absence of erythrocyte aggregation.  相似文献   

5.
The effects of propranolol (10−3 mM) on the surface anionic groups of Herpetomonas muscarum muscarum were analysed by cell electrophoresis, by ultrastructural cytochemistry and by identification of sialic acids using paper chromatography. Differentiation of H. muscarum muscarum induced by propranolol treatment caused a significant increase in the net negative surface charge. Binding of cationized ferritin (CF) and colloidal iron hydroxide particles was observed at the cell surface of both untreated and propranolol-treated cells. In cells incubated in the presence of the drug the CF particles were distributed in all membrane regions. However, there were small areas where the particles were absent. In H. muscarum muscarum exposed to propranolol the density of residues of sialic acid per cell was higher, and the agglutinating activity with Sendai virus was more intense. However, the pattern of sialic acid, characterized by the presence of N-acetylneuraminic acid derivative, was not modified upon cell interaction with the drug. Treatment of both control and propranolol-treated protozoa with neuraminidase significantly reduced the surface charge. These findings suggest that sialic acid residues are the major anionogenic groups exposed on the surface of H. muscarum muscarum .  相似文献   

6.
Human and rabbit red blood cells were subjected to partition in an aqueous, buffered Ficoll-Dextran two-phase system. The effect of neuraminidase treatment on the cell partition behaviour was examined and compared with the amount of sialic acids released from the cell surface and with the change in the electrophoretic mobility of the cells. The data obtained in the study indicate that there are two main groups of sialic acids differing in their topochemical arrangement on the human erythrocyte surface, and their relative hydrophobicity was evaluated. The results obtained in the case of rabbit red cells seem to indicate that sialic acids present on the cell surface are not the only major ionogenic surface components as is the case for human red cells. The data obtained support the assumption that the membrane surface charge is the determinant of cell partition only as a factor affecting the relative hydrophobicity of the cell surface.  相似文献   

7.
The aging of the red blood cell. A multifactor process   总被引:2,自引:0,他引:2  
Red blood cell (rbc) senescence is associated with loss of surface sialic acid, which is the principal carrier of surface negative charge and determines the electrokinetic behavior of old rbcs. Loss of sialic acid in an old rbc is demonstrated in its decreased electric mobility and lower negative charge density, determined topographically with cationic particle labeling. Surface sialic acid determines also the mutual attraction--repulsion forces, as demonstrated in enhanced aggluinability with cationic molecules, lectins, and blood group antibodies. Loss of sialic acid accompanies ATP-depletion in vitro; thus, a T-antigen site is unmasked. Macrophages have specific receptors to the site as to newly exposed galactose and N-acetyl galactosamine sugars. Furthermore, the involvement of complement molecules in the recognition of old RBCs by macrophages has been shown. This is possibly due to loss of sialic acid or at least a regrouping--relocation of surface anionic sites due to cell shape changes from discocytes to crenated forms, which accompany both in vivo and in vitro rbc aging. In turn, shape changes are apparently controlled by the cytoskeletal network underlying the rbc membrane, which undergoes structural alteration with physiologic aging in changing the dimensions of oligomeric spectrin and the thickness of the spectrin-actin cytoskeletal assembly.  相似文献   

8.
Red cells from the giant salamander Amphiuma means are shown to contain sialic acid. The amount removed by the action of neuraminidase is equal to that released by acid hydrolysis, indicating that all of the sialic acid is present on the outer surface of the plasma membrane. These cells have a negative electrophoretic mobility and 100% enzymatic removal of sialic acid results in a 40% reduction in the mobility, suggesting that either a fraction of the sialic acid carboxyl groups are unavailable to the action of external electric fields, or other negatively charged groups contribute to the surface charge. A further reduction in mobility of normal and sialic acid-free cells is caused by an increased extracellular calcium concentration. The negative groups affected by calcium are most likely to be phosphate groups, since the isoelectric point of the cells is found to lie between the pK values for H2PO-4 groups and the carboxyl groups of sialic acid. Membrane potentials of single cells, from which 80% or more of the total sialic acid had been removed, were identical to those measured in normal cells, confirming that sialic acid plays little, if any, direct role in the maintenance of membrane potentials and ionic permeabilities.  相似文献   

9.
Sialic acid, a nine-carbon sugar, is an acetylated derivative of neuraminic acid predominantly found in vertebrates, a few higher invertebrates, and certain types of bacteria. Red blood cells (RBCs) have a net negative surface charge and this bulk charge is due to ionized sialic acid. Decreased surface charge and sialic acid content have been reported in older erythrocytes, and it is postulated that the decreased electro-negativity may be related to cell senescence. In the present study we report the RBC and plasma sialic acid content during aging in rats. Our results show a significant decrease in RBC sialic acid content and increase in plasma sialic acid as a function of rat aging. The decreased sialic acid in erythrocyte membrane with increasing rat age presents a good biomarker of the aging process. The elevated plasma sialic acid may be a manifestation of several factors including increased expression of acute phase proteins and increased damage to various organs.  相似文献   

10.
Carbohydrates were located on the surface of Phytomonas davidi using ultrastructural cytochemistry, and agglutination induced by lectins which bind to residues of mannose, N-acetylglucosamine, galactose, N-acetylgalactosamine, fucose and sialic acid. The surface charge of the cells was analysed by the binding of cationic particles (colloidal iron and cationized ferritin) to the cell surface and by cell electrophoretic mobility (EPM). Based on observations of binding of cationic particles to the cell surface; a decrease in the binding of these particles to the cell surface; a decrease in the mean EPM of the cells after their incubation in the presence of neuraminidase; and detection of N-acetylneuraminic acid by paper and gas-liquid chromatography, it was concluded that sialic acid residues are exposed on the surface of P. davidi. These residues may be glycolipids or are masked on the cell surface since only after brief trypsinization were the cells agglutinated by the lectin from Limulus polyphemus.  相似文献   

11.
Cytochalasin B and the sialic acids of Ehrlich ascites cells   总被引:3,自引:0,他引:3  
The effect of cytochalasin B (CB) on the electrophoretic mobility and density of ionized sialic acid groups at the surface of Ehrlich ascites cells was examined together with a biochemical assay of the total sialic acid content of treated and control cells. Sialic acid assays indicated that CB-treated cells had a greater amount of total sialic acid and sialic acid sensitive to neuraminidase than control cells/cell. Equal amounts of sialic acid were removable by neuraminidase treatment from control cells and cells pretreated with neuraminidase and subsequently cultured with CB. The electrophoresis results showed a decrease in electrophoretic mobility in the presence of CB which could be reversed by growth in CB-free medium. Neuraminidase treatment did not make a significant additional reduction in the mobility of CB-treated cells. CB also prevented the recovery of electrophoretic mobility of neuraminidase treated cells. The results suggest that while CB does not inhibit sialic acid synthesis, it does alter the expression of ionized sialic acid groups at the electrokinetic surface. CB-containing culture media could be re-utilized several times suggesting that CB is not significantly bound or metabolized by Ehrlich ascites cells.  相似文献   

12.
Red cells from the giant salamander Amphiuma means are shown to contain sialic acid. The amount removed by the action of neuraminidase is equal to that released by acid hydrolysis, indicating that all of the sialic acid is present on the outer surface of the plasma membrane. These cells have a negative electrophoretic mobility and 100% enzymatic removal of sialic acid results in a 40% reduction in the mobility, suggesting that either a fraction of the sialic acid carboxyl groups are unavailable to the action of external electric fields, or other negatively charged groups contribute to the surface charge. A further reduction in mobility of normal and sialic acid-free cells is caused by an increased extracellular calcium concentration. The negative groups affected by calcium are most likely to be phosphate groups, since the isoelectric point of the cells is found to lie between the pK values for H2PO4 groups and the carboxyl groups of sialic acid. Membrane potentials of single cells, from which 80% or more of the total sialic acid had been removed, were identical to those measured in normal cells, confirming that sialic acid plays little, if any, direct role in the maintenance of membrane potentials and ionic permeabilities.  相似文献   

13.
The structure of the glycocalyx of the membrane of human erythrocytes and spectrin-depleted vesicles was studied under various conditions by two spin-labelling approaches: covalently labelling sialic acid residues of the glycocalyx and incorporation of a charged hydrophobic spin probe, CAT 16, being sensitive to alterations on the membrane surface into the lipid phase. Although cell electrophoretic measurements which were performed, additionally, indicated an erection of the glycocalyx upon decreasing the ionic strength of the suspension medium a more restricted mobility of spin-labelled sialic acid residues was found, in this case probably due to electrostatic interactions. The enhanced mobility of the spin probe CAT 16 at low ionic strength as well as in the case of neuraminidase-treated cells could be caused by reduced steric and electrostatic interaction with glycoproteins and glycolipids. La3+ adsorption and virus attachment on the human erythrocyte membrane were accompanied with a reduced mobility of sugar headgroups of the surface coat. No indication of cluster formation or lateral segregation of glycophorin molecules was found upon virus binding. After denaturation of the spectrin cytoskeleton of intact erythrocytes, increased mobility of spin-labelled sialic acid residues was observed.  相似文献   

14.
Surface charge of synaptosomes was studied with cationized ferritin (CF) binding at pH between 4 and 7. The characteristic of binding resembles that of the electrophoretic mobility and suggests an electrostatic interaction between CF and membranes. When sialic acid was partially removed from synaptosomes, a reduction in binding was detected. This suggests that sialic acid is one determinant of surface charge of synaptosomes. The present method differs from other CF studies in that the amount of bound CF was measured chemically instead of by electron microscopy. This method could be useful in other cell systems.  相似文献   

15.
An ascitic tumor (SEWA) induced by polyoma virus in A.SW mice was analyzed in vivo as well as in vitro with regard to the electrophoretic mobility (EPM) which may be considered as a reliable criterion of surface charge. After the i.p. transplantation of 10(5) cells, the EPM decreased up to 14th day. Then, the mobility gradually increased with the age of the tumor. In the first phase of tumor growth, we have considered the possibility that immunoglobulin cell coating may be responsible for the decrease in EPM. In the late phase of SEWA growth, the progressive increase in EPM might be due to a rearrangement of sialic acids on the outer part of the cell membrane.  相似文献   

16.
Circulating erythrocytes from rats were examined up to 30 weeks post whole-body exposures of 1.0 R for alterations in the expression of net negative surface charge as measured by whole-cell microelectrophoresis in saline sorbitol. Erythrocyte electrophoretic mobility was determined in an apparatus composed of a horizontal transilluminated cylindrical chamber, equipped with a reversible, blacked platinum electrode, immersed in a water bath maintained at 25.0 +/- 1.0 degree C (Rank Brothers). In two separate experiments, recurrent decreases in the expression of net negative surface charge occurred at 10, 17, and 30 weeks post-irradiation. At these times distributional analyses of recorded erythrocyte electrophoretic mobility (EEPM) values revealed a skewing of the normally distributed EEPM population values to lower EEPM. Total sialic acid content released from hydrolyzed erythrocyte membrane preparations revealed no significant differences between erythrocytes from sham and irradiated animals. In vivo post-irradiation labeling of erythrocytes with diisopropyl-[32P] phosphorofluoridate at 4 and 33 weeks (separate experiments) indicated only a minor abbreviated erythrocyte life span at 33 weeks. Therefore, effects from low dose (1.0 R) whole-body irradiation would appear to include a recurrent defect in the expression of the net negative surface charge.  相似文献   

17.
Circulating erythrocytes from rats were examined up to 30 weeks post whole-body exposures of 1.0 R for alterations in the expression of net negative surface charge as measured by whole-cell microelectrophoresis in saline sorbitol. Erythrocyte electrophoretic mobility was determined in an apparatus composed of a horizontal transilluminated cylindrical chamber, equipped with a reversible, blacked platinum electrode, immersed in a water bath maintained at 25.0±0.1°C (Rank Brothers). In two separate experiments, recurrent decreases in the expression of net negative surface charge occurred at 10, 17, and 30 weeks post-irradiation. At these times distribution analyses of recorded erythrocyte electrophoretic mobility (EEPM) values revealed a skewing of the normally distributed EEPM population values to lower EEPM. Total sialic acid content released from hydrolyzed erythrocyte membrane preparations revealed no significant differences between erythrocytes from sham and irradiated animals. In vivo post-irradiation labeling of erythrocytes with diisopropyl-[32P] phosphorofluoridate at 4 and 33 weeks (separate experiments) indicated only a minor abbreviated erythrocyte life span at 33 weeks. Therefore, effects from low dose (1.0 R) whole-body irradiation would appear to include a recurrent defect in the expression of the net negative surface charge.  相似文献   

18.
The fragmentation of human erythrocytes heated in a range of ionic environments has been examined by video microscopy, , the average number of surface wave crests growing on the cell rim during fragmentation by membrane externalization, andI, the percentage of cells internalizing membrane, were scored.The membrane diffusion potential was altered experimentally on decreasing the extracellular chloride concentration by substituting either membrane-impermeant sorbitol or Na gluconate for some NaCl. The external-membrane-face surface potential was altered either by surface charge depletion or by ionic strength changes. The dependence of morphological change on diffusion potential at constant cell volume and surface potentials was established over a 34-mV change in diffusion potential. The rate constants for morphological change with charge depletion at different diffusion potentials are largely independent of the diffusion potential. A l.O-mV increase in diffusion potential has an effect on morphological change of comparable magnitude to that of a 1.0-mV decrease in the modulus of the negative surface potential. When the diffusion potential increased on decreasing both the extracellular diffusible ion concentration and extracellular ionic strength, the effect on cell morphology of increasing the modulus of the surface potential was overcome by the effects of the diffusion potential change.  相似文献   

19.
细胞凋亡过程中细胞表面膜的电位很可能会发生改变。本文首次报导:应用细胞电泳技术(cell electrophoresis)对细胞毒素类药物放线菌酮(cycloheximide)、放线菌素 D(actinomycin D)和秋水仙碱(colchicine)等诱导的植物凋亡细胞与正常细胞之间电泳迁移率(EPM)的差异进行了比较,对引起的膜电位变化进行了定量分析。实验以玉米根尖分生组织为材料,制备原生质体,经过适当剂量的药物处理(Fig.1-B),在尽量减少细胞膜被破坏的情况下(Fig.2),观察到:三种细胞毒素类药物的作用有所不同,被诱导的植物凋亡细胞的膜表面Zeta电位绝对值比正常细胞的高(Fig.1-A)。本研究提示细胞电泳可对凋亡细胞表面膜电位的变化进行定量分析,为细胞凋亡的检测在方法上提供了新思路。  相似文献   

20.
SIALIC acid residues are the principal constituents on the surface of plasma membranes1 and make the chief contribution to the negative charge of the cell surface2. A number of functional alterations of the cell can be induced by removal of the sialic acid from the surface membrane by neuraminidase3–6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号