首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chemotaxis machinery of Bacillus subtilis is similar to that of the well characterized system of Escherichia coli. However, B. subtilis contains several chemotaxis genes not found in the E. coli genome, such as cheC and cheD, indicating that the B. subtilis chemotactic system is more complex. In B. subtilis, CheD is required for chemotaxis; the cheD mutant displays a tumbly phenotype, has abnormally methylated chemoreceptors, and responds poorly to most chemical stimuli. Homologs of B. subtilis CheD have been found in chemotaxis-like operons of a large number of bacteria and archaea, suggesting that CheD plays an important role in chemotactic sensory transduction for many organisms. However, the molecular function of CheD has remained unknown. In this study, we show that CheD catalyzes amide hydrolysis of specific glutaminyl side chains of the B. subtilis chemoreceptor McpA. In addition, we present evidence that CheD deamidates other B. subtilis chemoreceptors including McpB and McpC. Previously, deamidation of B. subtilis receptors was thought to be catalyzed by the CheB methylesterase, as is the case for E. coli receptors. Because cheD mutant cells do not respond to most chemoattractants, we conclude that deamidation by CheD is required for B. subtilis chemoreceptors to effectively transduce signals to the CheA kinase.  相似文献   

2.
Bacterial chemotactic responses are initiated when certain small molecules (i.e., carbohydrates, amino acids) interact with bacterial chemoreceptors. Although bacterial chemotaxis has been the subject of intense investigations, few have explored the influence of attractant structure on signal generation and chemotaxis. Previously, we found that polymers bearing multiple copies of galactose interact with the chemoreceptor Trg via the periplasmic binding protein glucose/galactose binding protein (GGBP). These synthetic multivalent ligands were potent agonists of Escherichia coli chemotaxis. Here, we report on the development of a second generation of multivalent attractants that possess increased chemotactic activities. Strikingly, the new ligands can alter bacterial behavior at concentrations 10-fold lower than those required with the original displays; thus, they are some of the most potent synthetic chemoattractants known. The potency depends on the number of galactose moieties attached to the oligomer backbone and the length of the linker tethering these carbohydrates. Our investigations reveal the plasticity of GGBP; it can bind and mediate responses to several carbohydrates and carbohydrate derivatives. These attributes of GGBP may underlie the ability of bacteria to sense a variety of ligands with relatively few receptors. Our results provide insight into the design and development of compounds that can modulate bacterial chemotaxis and pathogenicity.  相似文献   

3.
The chemoreceptor-CheA kinase-CheW coupling protein complex, with ancillary associated proteins, is at the heart of chemotactic signal transduction in bacteria. The goal of this work was to determine the cellular stoichiometry of the chemotaxis signaling proteins in Bacillus subtilis. Quantitative immunoblotting was used to determine the total number of chemotaxis proteins in a single cell of B. subtilis. Significantly higher levels of chemoreceptors and much lower levels of CheA kinase were measured in B. subtilis than in Escherichia coli. The resulting cellular ratio of chemoreceptor dimers per CheA dimer in B. subtilis is roughly 23.0 ± 4.5 compared to 3.4 ± 0.8 receptor dimers per CheA dimer observed in E. coli, but the ratios of the coupling protein CheW to the CheA dimer are nearly identical in the two organisms. The ratios of CheB to CheR in B. subtilis are also very similar, although the overall levels of modification enzymes are higher. When the potential binding partners of CheD are deleted, the levels of CheD drop significantly. This finding suggests that B. subtilis selectively degrades excess chemotaxis proteins to maintain optimum ratios. Finally, the two cytoplasmic receptors were observed to localize among the other receptors at the cell poles and appear to participate in the chemoreceptor complex. These results suggest that there are many novel features of B. subtilis chemotaxis compared with the mechanism in E. coli, but they are built on a common core.  相似文献   

4.
Escherichia coli cells use two distinct sensory circuits during chemotaxis towards carbohydrates. One circuit requires the phosphoenolpyruvate-dependent phosphotransferase system (PTS) and is independent of any specific chemoreceptor, whereas the other uses a chemoreceptor-dependent sensory mechanism analogous to that used during chemotaxis towards amino acids. Work on the carbohydrate chemotaxis sensory circuit of Bacillus subtilis reported in this article indicates that the B. subtilis circuit is different from either of those used by E. coli. Our chemotactic analysis of B. subtilis strains expressing various chimeric chemoreceptors indicates that the cytoplasmic, C-terminal module of the chemoreceptor McpC acts as a sensory-input element during carbohydrate chemotaxis. Our results also indicate that PTS-mediated carbohydrate transport, but not carbohydrate metabolism, is required for production of a chemotactic signal. We propose a model in which PTS-transport-induced chemotactic signals are transmitted to the C-terminal module of McpC for control of chemotaxis towards PTS carbohydrates.  相似文献   

5.
Transducers are transmembrane, methyl-accepting proteins central to the chemotactic systems of the enteric bacteria Escherichia coli and Salmonella typhimurium. Methyl-accepting proteins have been reported in a number of species in addition to these enteric bacteria. Those species include Bacillus subtilis and Spirochaeta aurantia, representatives of groups that diverged from ancestral enteric bacteria and from each other very early in bacterial evolution. An antiserum that reacts with all transducers of E. coli precipitated specifically methyl-accepting proteins from B. subtilis and S. aurantia, indicating that these proteins share antigenic determinants with transducers of E. coli. In addition, analysis of tryptic peptides by high-pressure liquid chromatography revealed similarities in the regions of methyl-accepting sites for proteins from all three species. These observations imply that structural features have been preserved in the three species from transducers contained in a common ancestor of eubacteria. It is thus reasonable to predict that other flagellated, chemotactic bacteria will be found to contain methyl-accepting proteins homologous to transducers of enteric bacteria.  相似文献   

6.
The study of chemotaxis describes the cellular processes that control the movement of organisms toward favorable environments. In bacteria and archaea, motility is controlled by a two-component system involving a histidine kinase that senses the environment and a response regulator, a very common type of signal transduction in prokaryotes. Most insights into the processes involved have come from studies of Escherichia coli over the last three decades. However, in the last 10 years, with the sequencing of many prokaryotic genomes, it has become clear that E. coli represents a streamlined example of bacterial chemotaxis. While general features of excitation remain conserved among bacteria and archaea, specific features, such as adaptational processes and hydrolysis of the intracellular signal CheY-P, are quite diverse. The Bacillus subtilis chemotaxis system is considerably more complex and appears to be similar to the one that existed when the bacteria and archaea separated during evolution, so that understanding this mechanism should provide insight into the variety of mechanisms used today by the broad sweep of chemotactic bacteria and archaea. However, processes even beyond those used in E. coli and B. subtilis have been discovered in other organisms. This review emphasizes those used by B. subtilis and these other organisms but also gives an account of the mechanism in E. coli.  相似文献   

7.
Motility and chemotaxis of filamentous cells of Escherichia coli   总被引:7,自引:0,他引:7       下载免费PDF全文
Filamentous cells of Escherichia coli can be produced by treatment with the antibiotic cephalexin, which blocks cell division but allows cell growth. To explore the effect of cell size on chemotactic activity, we studied the motility and chemotaxis of filamentous cells. The filaments, up to 50 times the length of normal E. coli organisms, were motile and had flagella along their entire lengths. Despite their increased size, the motility and chemotaxis of filaments were very similar to those properties of normal-sized cells. Unstimulated filaments of chemotactically normal bacteria ran and stopped repeatedly (while normal-sized bacteria run and tumble repeatedly). Filaments responded to attractants by prolonged running (like normal-sized bacteria) and to repellents by prolonged stopping (unlike normal-sized bacteria, which tumble), until adaptation restored unstimulated behavior (as occurs with normal-sized cells). Chemotaxis mutants that always ran when they were normal sized always ran when they were filament sized, and those mutants that always tumbled when they were normal sized always stopped when they were filament sized. Chemoreceptors in filaments were localized to regions both at the poles and at intervals along the filament. We suggest that the location of the chemoreceptors enables the chemotactic responses observed in filaments. The implications of this work with regard to the cytoplasmic diffusion of chemotaxis components in normal-sized and filamentous E. coli are discussed.  相似文献   

8.
Bacillus subtilis chemotaxis: a deviation from the Escherichia coli paradigm   总被引:12,自引:0,他引:12  
In Escherichia coli, chemotactic sensory transduction is believed to involve phosphoryl transfer for excitation, and changes in receptor methylation for adaptation. In Bacillus subtilis, changes in degree of receptor methylation do not bring about adaptation. Novel methylation reactions are believed to be involved in excitation in B. subtilis. The main chemotaxis proteins of E. coli--CheA, CheB, CheR, CheW and CheY--are present in B. subtilis but play somewhat different roles in the two organisms. Several unique chemotaxis proteins are also present in B. subtilis. Some of the properties of B. subtilis chemotaxis are also seen in Halobacterium halobium, suggesting that there may be a similar underlying mechanism that predates the evolutionary separation of the bacteria from the archaea and eucarya.  相似文献   

9.
Ribosomes from Gram-negative bacteria such as Escherichia coli exhibit non-specific translation of bacterial mRNAs. That is, they are able to translate mRNAs from a variety of sources in a manner independent of the "strength" of the Shine-Dalgarno region, in contrast to ribosomes from many Gram-positive bacteria, such as Bacillus subtilis, which show specific translation in only being able to translate other Gram-positive mRNA, or mRNAs that have "strong" Shine-Dalgarno regions. There is an evolutionary correlation between the translational specificity and the absence of a protein analogous to E. coli ribosomal protein S1. The specificity observed with B. subtilis ribosomes is a function of their 30 S subunit which lacks S1; translation of Gram-negative mRNA can occur with heterologous ribosomes containing the 30 S subunit of E. coli ribosomes and the 50 S subunit of B. subtilis ribosomes. However, the addition of E. coli S1 alone to B. subtilis ribosome does not overcome their characteristic inability to translate mRNA from Gram-negative organisms. By contrast, the removal of S1 from E. coli ribosomes results in translational behavior similar to that shown by B. subtilis ribosomes in that the S1-depleted E. coli ribosomes can translate mRNA from Gram-positive sources in the absence of added S1, although addition of S1 stimulates further translation of such mRNAs by the E. coli ribosomes.  相似文献   

10.
In eukaryotes, DNA replication is coupled to the cell cycle through the actions of cyclin-dependent kinases and associated factors. In bacteria, the prevailing view, based primarily from work in Escherichia coli, is that growth-dependent accumulation of the highly conserved initiator, DnaA, triggers initiation. However, the timing of initiation is unchanged in Bacillus subtilis mutants that are ~30% smaller than wild-type cells, indicating that achievement of a particular cell size is not obligatory for initiation. Prompted by this finding, we re-examined the link between cell size and initiation in both E. coli and B. subtilis. Although changes in DNA replication have been shown to alter both E. coli and B. subtilis cell size, the converse (the effect of cell size on DNA replication) has not been explored. Here, we report that the mechanisms responsible for coordinating DNA replication with cell size vary between these two model organisms. In contrast to B. subtilis, small E. coli mutants delayed replication initiation until they achieved the size at which wild-type cells initiate. Modest increases in DnaA alleviated the delay, supporting the view that growth-dependent accumulation of DnaA is the trigger for replication initiation in E. coli. Significantly, although small E. coli and B. subtilis cells both maintained wild-type concentration of DnaA, only the E. coli mutants failed to initiate on time. Thus, rather than the concentration, the total amount of DnaA appears to be more important for initiation timing in E. coli. The difference in behavior of the two bacteria appears to lie in the mechanisms that control the activity of DnaA.  相似文献   

11.
In chemotactic bacteria, transmembrane chemoreceptors, CheA and CheW form the core signalling complex of the chemotaxis sensory apparatus. These complexes are organized in extended arrays in the cytoplasmic membrane that allow bacteria to respond to changes in concentration of extracellular ligands via a cooperative, allosteric response that leads to substantial amplification of the signal induced by ligand binding. Here, we have combined cryo-electron tomographic studies of the 3D spatial architecture of chemoreceptor arrays in intact E. coli cells with computational modelling to develop a predictive model for the cooperativity and sensitivity of the chemotaxis response. The predictions were tested experimentally using fluorescence resonance energy transfer (FRET) microscopy. Our results demonstrate that changes in lateral packing densities of the partially ordered, spatially extended chemoreceptor arrays can modulate the bacterial chemotaxis response, and that information about the molecular organization of the arrays derived by cryo-electron tomography of intact cells can be translated into testable, predictive computational models of the chemotaxis response.  相似文献   

12.
Chemotaxis is crucial for bacterial adherence and colonization of the host gastrointestinal tract. Previous studies have demonstrated that chemotaxis affects the virulence of causative pathogens and the infection in the host. However, the chemotactic abilities of non-pathogenic and commensal gut bacteria have rarely been explored. We observed that Roseburia rectibacter NSJ-69 exhibited flagella-dependent motility and chemotaxis to a variety of molecules, including mucin and propionate. A genome-wide analysis revealed that NSJ-69 has 28 putative chemoreceptors, 15 of which have periplasmic ligand-binding domains (LBDs). These LBD-coding genes were chemically synthesized and expressed heterologously in Escherichia coli. Intensive screening of ligands revealed four chemoreceptors bound to mucin and two bound to propionate. When expressed in Comamonas testosteroni or E. coli, these chemoreceptors elicited chemotaxis toward mucin and propionate. Hybrid chemoreceptors were constructed, and results showed that the chemotactic responses to mucin and propionate were dependent on the LBDs of R. rectibacter chemoreceptors. Our study identified and characterized R. rectibacter chemoreceptors. These results will facilitate further investigations on the involvement of microbial chemotaxis in host colonization.  相似文献   

13.
14.
The four transmembrane chemoreceptors of Escherichia coli sense phenol as either an attractant (Tar) or a repellent (Tap, Trg, and Tsr). In this study, we investigated the Tar determinants that mediate its attractant response to phenol and the Tsr determinants that mediate its repellent response to phenol. Tar molecules with lesions in the aspartate-binding pocket of the periplasmic domain, with a foreign periplasmic domain (from Tsr or from several Pseudomonas chemoreceptors), or lacking nearly the entire periplasmic domain still mediated attractant responses to phenol. Similarly, Tar molecules with the cytoplasmic methylation and kinase control domains of Tsr still sensed phenol as an attractant. Additional hybrid receptors with signaling elements from both Tar and Tsr indicated that the transmembrane (TM) helices and HAMP domain determined the sign of the phenol-sensing response. Several amino acid replacements in the HAMP domain of Tsr, particularly attractant-mimic signaling lesions at residue E248, converted Tsr to an attractant sensor of phenol. These findings suggest that phenol may elicit chemotactic responses by diffusing into the cytoplasmic membrane and perturbing the structural stability or position of the TM bundle helices, in conjunction with structural input from the HAMP domain. We conclude that behavioral responses to phenol, and perhaps to temperature, cytoplasmic pH, and glycerol, as well, occur through a general sensing mechanism in chemoreceptors that detects changes in the structural stability or dynamic behavior of a receptor signaling element. The structurally sensitive target for phenol is probably the TM bundle, but other behaviors could target other receptor elements.  相似文献   

15.
微囊藻毒素对典型微生物生长及生理生化特性的影响   总被引:2,自引:0,他引:2  
研究了不同浓度微囊藻毒素对典型微生物大肠杆菌和枯草芽孢杆菌生长及生理生化特性的影响。微囊藻毒素对大肠杆菌和枯草芽孢杆菌的生长和细胞活性具有一定的剂量效应,较高浓度微囊藻毒素对其生长和活性有短时间的抑制作用,随着处理时间的延长,细胞的生长和活性逐渐恢复。细胞内可溶性糖和可溶性蛋白的含量,处理组和对照组相比均有先上升后下降的趋势。结果表明,微囊藻毒素的处理对大肠杆菌和枯草芽孢杆菌具有一定的胁迫作用,细胞通过调节细胞内可溶性蛋白和可溶性糖的含量来抵抗外界胁迫,但随着处理时间的延长,细菌逐渐适应了这种胁迫,恢复正常的生长。  相似文献   

16.
17.
Mode of antibacterial action by gramicidin S   总被引:1,自引:0,他引:1  
To elucidate the mode of antibacterial action by gramicidin S (GS), a detailed experiment on GS distribution on bacteria cells was carried out. 14C-Labeled gramicidin S ([14C]GS) was incubated with cells of Gram-positive Bacillus subtilis and Gram-negative Escherichia coli, and the amount of [14C]GS adsorbed on the cells was measured. Adsorption on B. subtilis cells was observed from 1 microgram/ml of [14C]GS. As the concentration of [14C]GS increased, the amount adsorbed on B. subtilis increased discontinuously, producing a curve which had three plateaus. On the other hand, [14C]GS was not easily adsorbed on E. coli cells at lower concentrations, but the amount adsorbed increased above 6 micrograms/ml, and the cells were temporarily saturated with GS at 10 micrograms/ml, which is the minimum inhibitory concentration for E. coli. The amount of [14C]GS adsorbed on the protoplast membrane of B. subtilis was the same as that of natural cells. However, the amount of [14C]GS adsorbed on the cell wall dropped to about 20% of that of natural bacteria. These facts indicate that GS is adsorbed on the cell membrane of bacteria particularly. The uptake of amino acid or glucose in B. subtilis was inhibited by GS. Therefore, it is concluded that GS damages the phospholipid bilayer of the cell membrane by adsorption, and prevents the functioning of the cell membrane. The amount of [14C]GS adsorbed on the spheroplast membrane of E. coli increased remarkably as compared with natural cells, even at a lower concentration of GS. The poor GS adsorption on E. coli cells may be due to the permeability barrier of the E. coli cell wall.  相似文献   

18.
Using optical turbidimetry to measure the growth of Escherichia coli and Bacillus subtilis, we determined the mean lethal dose (LD50) values for various phenanthrolines. The dimethyl-substituted compounds are found to be more toxic to bacteria, with doses near 5 micrograms/mL reducing the number of viable cells by 50% over a 24-h period. 2,9-Dimethyl phenanthroline is the most potent compound against B. subtilis, being six times more effective than against E. coli. Bipyridine is the least toxic substance and is twice as effective against E. coli as it is against B. subtilis. Evidence is presented to show copper ions enhance the antibacterial action of phenanthrolines and may be required for activity.  相似文献   

19.
20.
Bacillus subtilis and its close relatives are widely used in industry for the Sec-dependent secretory production of proteins. Like other Gram-positive bacteria, B. subtilis does not possess SecB, a dedicated targeting chaperone that posttranslationally delivers exported proteins to the SecA component of the translocase. In the present study, we have implemented a functional SecB-dependent protein-targeting pathway into B. subtilis by coexpressing SecB from Escherichia coli together with a SecA hybrid protein in which the carboxyl-terminal 32 amino acids of the B. subtilis SecA were replaced by the corresponding part of SecA from E. coli. In vitro pulldown experiments showed that, in contrast to B. subtilis SecA, the hybrid SecA protein gained the ability to efficiently bind to E. coli SecB, suggesting that the structural details of the extreme C-terminal region of SecA constitute a crucial SecB binding specificity determinant. Using a poorly exported mutant maltose binding protein (MalE11) and alkaline phosphatase (PhoA) as model proteins, we could demonstrate that the secretion of both proteins by B. subtilis was significantly enhanced in the presence of the artificial protein targeting pathway. Mutations in SecB that do not influence its chaperone activity but prevent its interaction with SecA abolished the secretion stimulation of both proteins, demonstrating that the implemented pathway in fact critically depends on the SecB targeting function. From a biotechnological view, our results open up a new strategy for the improvement of Gram-positive bacterial host systems for the secretory production of heterologous proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号