首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nucleotide recognition sequence for the restriction-modification enzyme of Escherichia coli A (EcoA) has been determined to be GAG-7N-GTCA. This sequence is fairly similar, but distinctly different from the two other type I restriction enzyme recognition sites known for E. coli B and E. coli K12, respectively. N6-adenosine methylation has been observed at nucleotide positions 2 and 12 within that sequence after modification by EcoA. As a reference point for mapping the single EcoA site in lambda, the position of lambda point mutation Oam29 has been determined also.  相似文献   

2.
A type I restriction endonuclease from a new isolate of Escherichia coli (E. coli E166) has been purified and characterised. The enzyme, EcoD, has a recognition sequence similar in overall structure to the previously determined type I enzyme sequences, an exception being that it is degenerate. The sequence is 5'-T-T-A-N-N-N-N-N-N-N-G-T-C-Y-3' 3'-A-A-T-N-N-N-N-N-N-N-C-A-G-R-5' where Y is a pyrimidine, R is a purine and N can be any nucleotide. The enzyme methylates adenosyl residues in both strands of the DNA that are separated by ten base pairs, suggesting that the enzyme interacts with DNA along one face of the helix making contacts in two successive major grooves.  相似文献   

3.
The nucleotide sequence of the E. coli glnALG operon has been determined. The glnL (ntrB) and glnG (ntrC) genes present a high homology, at the nucleotide and aminoacid levels, with the corresponding genes of Klebsiella pneumoniae. The predicted aminoacid sequence for glutamine synthetase allowed us to locate some of the enzyme domains. The structure of this operon is discussed.  相似文献   

4.
5.
Bacteriophage G4 possesses a single EcoB site located in the overlap between restriction fragments HinfI-12 and HaeIII-6. The sequence 5′-T-G-A … 8N … T-G-C-T occurs once in this segment and nowhere else in the DNA sequence of G4. Four independent G4 mutants that were not restricted by Escherichia coli B possessed the sequence 5′-T-G-A … 8N … T-G-C-C. The common sequence shared by the previously mapped EcoB sites on φXsB1, simian virus 40, f1, and fd DNAs is 5′-T-G-A … 8N … T-G-C-T … 9N … T. However, the sequence in the region of the G4 EcoB site contains an A instead of the final T conserved in these other examples. When the G4 EcoB site is aligned with the other EcoB sites, there are no conserved residues within 50 bases of the common sequence, 5′-T-G-A … 8N … T-G-C-T, except for those seven residues. The analysis of the EcoB site on G4 provides further evidence that only those seven bases are recognized by the E. coli B restriction enzyme.  相似文献   

6.
7.
8.
9.
10.
The DNA sequence of argI from Escherichia coli K12.   总被引:13,自引:3,他引:13       下载免费PDF全文
The argI gene from E. coli K12 has been sequenced. It contains an open reading frame of 1002 bases which encodes a polypeptide of 334 amino acids. Three such polypeptides are required to form the functional catalytic trimer (c3) of ornithine transcarbamoylase (OTCase-1, EC 2.1.3.3). The molecular mass of the mature trimer deduced from the amino acid sequence is 114,465 daltons. An altered form of argI was produced when a 1.6 kilobase DdeI fragment was subcloned into the HincII site of plasmid pUC8 extending the open reading frame an additional 20 nucleotides. It has been previously reported that the amino-terminal region of the respective polypeptides of argI, argF, and pyrB of E. coli possessed significant homology. In contrast, the homologous promoter/operator regions of argI and argF did not appear to share any homologies with pyrB. However, a closer scrutiny of the nucleotide sequence immediately preceding the pyrBI attenuator revealed a remarkable similarity to the argI and argF control region.  相似文献   

11.
In this report we present the complete nucleotide sequence of the ilvGMEDA operon of Escherichia coli. This operon contains five genes encoding four of the five enzymes required for the biosynthesis of isoleucine and valine. We identify and describe the coding regions for these five structural genes and the structural and functional features of the flanking and internal regulatory regions of this operon. This new information contributes to a more complete understanding of the overall control of the biosynthesis of isoleucine and valine.  相似文献   

12.
Summary We have analysed the mechanism of action of a ts mutation in E. coli, which has an effect on the expression of the restriction and modification phenotype. The frequencies of recombinants obtained in transduction experiments support the idea that the temperature sensitive mutation is located outside the hsd operon in the gene denoted hsd. X. Complementation experiments demonstrated the trans-dominant nature of the temperature sensitive mutation. The possible role of the hsd.X product in the formation of EcoR.K and EcoM.K complexes and their interaction with the recognition site on the DNA is discussed.  相似文献   

13.
14.
15.
L Szilk  P Venetianer    A Kiss 《Nucleic acids research》1990,18(16):4659-4664
The genes coding for the GGNCC specific Sau96I restriction and modification enzymes were cloned and expressed in E. coli. The DNA sequence predicts a 430 amino acid protein (Mr: 49,252) for the methyltransferase and a 261 amino acid protein (Mr: 30,486) for the endonuclease. No protein sequence similarity was detected between the Sau96I methyltransferase and endonuclease. The methyltransferase contains the sequence elements characteristic for m5C-methyltransferases. In addition to this, M.Sau96I shows similarity, also in the variable region, with one m5C-methyltransferase (M.SinI) which has closely related recognition specificity (GGA/TCC). M.Sau96I methylates the internal cytosine within the GGNCC recognition sequence. The Sau96I endonuclease appears to act as a monomer.  相似文献   

16.
An Escherichia coli K12 chromosomal EcoRI-BamHI fragment containing a mutant hsdS locus was cloned into plasmid pBR322. The mcrB gene, closely linked to hsdS, was used for selection of clones with the inserted fragment using T4 alpha gt57 beta gt14 and lambda vir. PvuII phages; the phage DNAs contain methylated cytosines and hence can be used to demonstrate McrB restriction. For the efficient expression of the hsdS gene, a BglII fragment of phage lambda carrying the pR promoter was inserted into the BamHI site of the hybrid plasmid. Under these conditions a trans-dominant effect of the hsdXts+d mutation on restriction and modification was detected. Inactivation of the hsdS gene by the insertion of the lambda phage BglII fragment into the BglII site within this gene resulted in the disappearance of the trans-dominant effect. When the cloned BamHI-EcoRI fragment was shortened by HpaI and EcoRI restriction enzymes, the trans-dominant effect was fully expressed. The results indicate that the Xts+d mutation is located in the hsdS gene. The effect of gene dosage of the HsdS subunit on the expression of Xts+d mutation was studied. The results of complementation experiments, using F'-merodiploids or plasmid pBR322 with an inserted Xts+d mutation, support the idea that the HsdSts+d product competes with the wild-type HsdS product, and has a quantitatively different effect on restriction and modification.  相似文献   

17.
Nucleotide sequence of the dcm locus of Escherichia coli K12.   总被引:3,自引:6,他引:3       下载免费PDF全文
  相似文献   

18.
An alanine tRNA with the anticodon 5'-GGC-3' has been identified in Escherichia coli K-12. It is the first sequenced alanine tRNA with G in the 5' position of the anticodon. tRNAAlaGGC has A in the "semi-invariant" position 32. At the "invariant" position 8 we observed both U and another, unknown, nucleoside.  相似文献   

19.
J L Cox  B J Cox  V Fidanza  D H Calhoun 《Gene》1987,56(2-3):185-198
The ilvGMEDA gene cluster of Escherichia coli K-12 has been the focus of intensive genetic and biochemical analysis for the past 30 years. Genetic regulation of the ilvGMEDA cluster involves attenuation, internal promoters, internal Rho-dependent termination sites, a site of polarity in the ilvG pseudogene of the wild-type organism, and autoregulation by the ilvA gene product, the biosynthetic L-threonine deaminase. We have now completed the nucleotide sequence of the 6600-bp cluster and have analyzed it, along with the ilvYC, ilvBN, and ilvIH genes, for codon frequencies and possible evolutionary relationships. The isoleucine content of each of the gene products of the ilvGMEDA cluster is quite similar (less than a two-fold variation), thus excluding one possible interpretation of the isoleucine-specific downstream amplification phenomenon. There is no evidence for retrograde evolution in the cluster since no significant homologies are detectable among genes that catalyze sequential reactions of the pathway. A highly significant homology does exist, however, between the threonine deaminases of yeast mitochondria and E. coli. The sequence at the boundary of the ilvA and ilvD genes is TAATAATG, so that the second TAA stop codon of ilvD overlaps the ATG initiation codon of ilvA.  相似文献   

20.
5'-Phosphoribosylglycinamide transformylase (EC 2.1.2.2), encoded by the purN gene of Escherichia coli, catalyzes the synthesis of 5'-phosphoribosylformylglycinamide from 5'-phosphoribosylglycinamide (GAR). The mature protein, as deduced from the purN structural gene sequence, contains 212 amino acid residues and has a calculated Mr of 23,241. The purN gene is located adjacent to and immediately downstream from the purM gene encoding 5'-phosphoribosyl-5-aminoimidazole (AIR) synthetase where the initiation codon for GAR transformylase overlaps the termination codon of AIR synthetase. Based on polarity studies, the expression of the purN gene originates from the purM control region and thus forms a purMN operon. The E. coli GAR transformylase shows greater homology to the GAR transformylase domain of the trifunctional Gart polypeptide of Drosophila than to the single GAR transformylase of Saccharomyces. Immediately downstream from the purN gene of the purMN operon is a region of dyad symmetry capable of forming a hairpin stem and loop structure characteristic of a rho-independent terminator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号