首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The significance of thymus cell chimerism in the induction and maintenance of tolerance was investigated. Mls-1b BALB/c mice were neonatally tolerized by the intravenous administration of either bone marrow (BM) cells or peritoneal cavity (PerC) cells from Mls-1b/a (BALB/c x AKR) F1 mice. Tolerance was long-lasting in the BM cell group, but transient in the PerC cell group, probably because PerC cells lack hemopoietic stem cells required for a continuous supply of tolerance-inducing cells. The degree of anti-Mls-1a responsiveness of these BALB/c thymus cells was correlated with the degree of intrathymic distribution of the inoculated F1 cells. The effect of BM cell inoculation, resulting in a year-long deletion of Mls-1a-reactive V beta 6-bearing T cells is in marked contrast to that of PerC cell inoculation which causes only a transient loss of V beta 6+ mature thymocytes (for about 1 week after birth). This functional profile of the tolerant state correlates well with the degree and persistence of the intrathymic presence of F1 type Ia+ cells. The long-lasting presence of donor-derived cells throughout the thymus tissue in the BM cell group is also in marked contrast to the early disappearance of Ia+ cells (within 2-3 weeks) from the cortex and then from the medulla in the PerC cell group, although these Ia+ cells were once spread throughout the thymus tissue 4 days after the tolerance-inducing cell inoculation. Taken together with a failure to induce consistent unresponsiveness to Mls-1a determinants in Mls-1b thymocytes regenerating in Mls-1a-thymic epithelial environments, all the above data indicate that intrathymic chimerism caused by hemopoietic stem cell-derived MHC-class II-bearing cells is a requisite for the induction and maintenance of unresponsiveness by means of clonal deletion in experimentally as well as naturally induced tolerance to Mls determinants.  相似文献   

2.
Specificity of anti-Mlsa tolerance induced in BALB/c (H-2d, Mlsb) neonates was investigated by a popliteal lymph node (PLN)-swelling assay for the local graft-versus-host (GVH) reaction by injecting tolerant thymus cells into the footpads of several types of F1 hybrid mice. When thymus cells were obtained from 1-week-old normal BALB/c, they evoked enlargement of PLNs of (BALB/c X DBA/2)F1 (H-2d, Mlsb/a) [CDF1] recipients and of other hybrid recipients, heterozygous in Mlsa,c,d alleles, irrespective of the major histocompatibility complex (MHC) haplotypes. The same thymus cells did not cause the response in MHC-heterozygous F1 hybrids when the hybrids were homozygous in Mlsb, identical with BALB/c mice. Therefore, the PLN response to Mls antigens, known to be closely associated with MHC-class II antigens, was not directed to the class II antigens themselves. This enabled us to examine the effects of MHC on tolerance induction to the Mls antigens. When BALB/c neonates were injected with CDF1 bone marrow cells, complete tolerance to Mlsa-H-2d antigens of CDF1 cells was induced in the thymus, while responsiveness to Mlsa antigens in the context of H-2k and H-2b antigens, was not affected. This indicates MHC-restriction of neonatal tolerance to Mls antigens. Furthermore, when Mls and H-2-heterozygous (BALB/c X AKR)F1 (H-2d/k, Mlsb/a) bone marrow cells served as the tolerogen, thymus cells of BALB/c neonates were also tolerized to Mlsa-H-2k antigens as well as to Mlsa-H-2d antigens, which suggests the involvement of MHC, probably class II antigens of tolerance-inducing cells.  相似文献   

3.
Nonmyeloablative conditioning has significantly reduced the morbidity associated with bone marrow transplantation. The donor hemopoietic cell lineage(s) responsible for the induction and maintenance of tolerance in nonmyeloablatively conditioned recipients is not defined. In the present studies we evaluated which hemopoietic stem cell-derived components are critical to the induction of tolerance in a total body irradiation-based model. Recipient B10 mice were pretreated with mAbs and transplanted with allogeneic B10.BR bone marrow after conditioning with 100-300 cGy total body irradiation. The proportion of recipients engrafting increased in a dose-dependent fashion. All chimeric recipients exhibited multilineage donor cell production. However, induction of tolerance correlated strictly with early production of donor T cells. The chimeras without donor T cells rejected donor skin grafts and demonstrated strong antidonor reactivity in vitro, while possessing high levels of donor chimerism. These animals lost chimerism within 8 mo. Differentiation into T cells was aborted at a prethymic stage in recipients that did not produce donor T cells. Moreover, donor Ag-driven clonal deletion of recipient T cells occurred only in chimeras with donor T cells. These results demonstrate that donor T cell production is critical in the induction of transplantation tolerance and the maintenance of durable chimerism. In addition, donor T cell production directly correlates with the deletion of potentially alloreactive cells.  相似文献   

4.
Neonatal tolerance inducibility of self-major histocompatibility complex (MHC)-class II-associated antigens was compared with that of allo-class II antigens. BALB/c (H-2d, Mlsb) mice, less than 24 hr after birth, were intravenously injected with bone marrow cells of either (BALB/c X DBA/2)F1 (H-2d, Mlsb/a, semiallogeneic at the Mls locus) or (BALB/c X B10.BR)F1 (H-2d/k, Mlsb; semiallogeneic at the MHC), as antigens. The mice were tested for in vivo immune activity of class II-reactive T cells by means of the popliteal lymph node-swelling assay. They developed tolerance, irrespective of type of antigens, showing profoundly suppressed host-versus-graft reaction, and those tolerized to the allo-MHC antigens accepted skin grafts of the corresponding allogeneic mice. In the thymus and spleen of the Mls-tolerant mice, antigen-specific class II-reactive T-cell activity was completely abolished, without the apparent involvement of suppressor cells. In contrast, the activity in allo-MHC-tolerant mice was not reduced in either thymus or peripheral lymphoid organs, suggesting that systemic hyporesponsiveness is attributable to reversible suppression of immune competent cells. The resistance for cell-level tolerance induction to allo-class II antigens may not be ascribed to the active participation of allo-MHC antigens in prevention of or in escape from tolerance induction or both, since an injection of bone marrow cells of both Mls and H-2-semiallogeneic (DBA/2 X B10.BR)F1 (H-2d/k, Mlsa/b) mice could induce tolerance to Mlsa-H-2d antigens in newborn thymus cells.  相似文献   

5.
New born and 3-week-old SJL mice but not 8–12-week-old animals could be rendered tolerant to rabbit γ-globulin. Animals reconstituted with thymus cells from 12-week-old donors and bone marrow cells from 3-week-old donors showed resistance to tolerance induction. Animals reconstituted with bone marrow cells from 12-week-old animals and thymus cells from 3-week-old donors could be rendered tolerant. Earlier work has shown that tolerance could be induced in older animals, if they were deprived of competent accessory cells. It was suggested that a lesion in the thymus cell population is expressed through the mediation of accessory cells. The possibility of a relation between resistance to tolerance induction and lymphoid malignancies was discussed.  相似文献   

6.
Donor hemopoietic cell engraftment is considered to be an indicator of allograft tolerance. We depleted chimerism with cells specifically presensitized to the bone marrow donor to investigate its role in mixed chimera-induced tolerance. Three experimental models were used: model A, B10.A cells presensitized to B6 (a anti-b cells) were injected into (B6 x D2)F(1) --> B10.A mixed chimeras grafted with DBA/2 skin; model B, anti-B6 presensitized cells prepared in DBA/2 --> B10.A mixed chimeras, thus unresponsive to DBA/2 (a anti-b/tol-d cells), were injected into (B6 x D2)F(1) --> B10.A mixed chimeras grafted with DBA/2 skin; and model C, (BALB/c x B6)F(1) cells presensitized to CBA (d/b anti-k cells) were injected into (B6 x CBA)F(1) --> BALB/c mixed chimeras grafted with B6 skin. Skin was grafted on day 30. Injection of each cell type before skin grafting abolished hemopoietic cell engraftment and prevented allograft acceptance. Injection of presensitized cells after skin grafting resulted in different outcomes depending on the models. In model A, injection of a anti-b cells completely depleted chimerism and caused allograft rejection. In model B, injection of a anti-b/tol-d cells markedly reduced, but did not deplete, peripheral chimerism and maintained skin allograft survival. In model C, d/b anti-k cells reduced chimerism to the background levels but failed to cause graft rejection, probably due to persistence of injected cells which share MHC with skin grafts. Together, the results show that presence of chimeric donor cells is essential in both the induction and maintenance phases of tolerance induced by mixed chimerism.  相似文献   

7.
Wang YB  Ogawa Y  Doi H  Kusumoto K  Jin TN  Ikehara S 《Plastic and reconstructive surgery》2003,111(1):291-7; discussion 298-9
The induction of donor-specific tolerance to skin allografts was investigated in rabbits using bone marrow transplantation techniques reported to be effective in mice. Various routes of bone marrow transplantation (i.e., intravenous, portal venous, or intraosseous) were also examined. In regimen A, the animals were treated with portal venous injection of bone marrow cells from the donor on day 0 and intravenous injection of bone marrow cells from the same donor on posttransplant day 5. In regimen B, the animals were treated with portal venous and intraosseous injections of donor bone marrow cells on day 0 and intravenous injection of bone marrow cells from the same donor on posttransplant day 5. In regimen C, the animals were given intraosseous injection of donor bone marrow cells on day 0 and intravenous injection of bone marrow cells from the same donor on posttransplant day 5. It was found that regimens B and C were more effective than regimen A in prolonging allograft survival. The results demonstrate that induction of allograft tolerance can be achieved by bone marrow transplantation in a rabbit model. This protocol deserves further study in other large animal models.  相似文献   

8.
Three-week-old DDD mice were easily rendered tolerant to human IgG while 12-week-old mice were tolerized only partially. Mechanisms of the development of the resistance with age were investigated. It was shown by the cell transfer experiments that spleen T cells, purified on a Tetron wool column, from older mice were responsible for the resistance, which was not associated with the loss of suppressor cells with age. To elucidate the possibility of whether tolerogen-sensitive spleen T cells differentiate into resistant ones, cell transfer experiments were carried out in which thymectomized, lethally irradiated mice were reconstituted with spleen cells from 3-week-old mice and then treated with the tolerogen on various days afterward. The results indicated that tolerance was inducible in these hosts to the same degree, irrespective of the timing of the tolerogen injection, while age-matched intact mice gradually acquired the resistance. Then the possibility of whether age of thymus affected tolerance inducibility of the hosts or not was examined. The tolerogen was injected into irradiated, bone-marrow-reconstituted mice which bore either 4- or 7-week-old thymus. It was shown that helper T cells newly generated under younger thymus acquired higher susceptibility to the tolerogen. There was no difference in tolerance inducibility irrespective as to whether bone marrow cells were prepared from younger or older mice. From these observations it was suggested that the resistance to tolerance induction in DDD mice is acquired through the appearance of resistant T cells which are generated from T-cell precursors in bone marrow under the influence of a radioresistant thymic constitution and predominantly located in the spleen.  相似文献   

9.
The induction of TNP-specific B lymphocyte tolerance by TNBS in sources representing various differentiation states was studied in an adoptive cell transfer system. An adoptive assay was utilized in which the delay of immunization with the T-independent antigen TNP-LPS resulted in an enhanced PFC response. TNBS induced tolerance in spleen cells which was independent of T cell activity, was dose dependent, and could be adoptively transferred. While bone marrow and spleen cells were susceptible to tolerogenesis after cell transfer, TNBS treatment of the donor induced unresponsiveness in splenocytes but not marrow cells. The tolerance dose response relationship and the effect of the temporal relationship between cell transfer and tolerogenesis were studied in B lymphocytes from various sources. Adult spleen cells were resistant to tolerance induction late in the adoptive response, and the tolerance induced by TNBS administration 1 hr after cell transfer was dose dependent. Athymic nude spleen cells and adult bone marrow cells displayed similar characteristics while fetal liver cells were somewhat more susceptible to the induction of unresponsiveness. Neonatal spleen cells were rendered tolerant at much lower doses and at any stage of the adoptive response. The hierarchy obtained in these studies in the order of decreasing resistance to tolerance induction is: adult normal and athymic nude spleen and adult bone marrow, fetal liver, and neonatal spleen. This variation in tolerogenesis appears to be due to the maturity of the cell types which may reflect differences in B lymphocyte sub-populations.  相似文献   

10.
Creation of stable hemopoietic chimerism has been considered to be a prerequisite for allograft tolerance after bone marrow transplantation (BMT). In this study, we demonstrated that allogeneic BMT with bone marrow cells (BMC) prepared from either knockout mice deficient in both CD4 and CD8 T cells or CD3E-transgenic mice lacking both T cells and NK cells maintained a high degree of chimerism, but failed to induce tolerance to donor-specific wild-type skin grafts. Lymphocytes from mice reconstituted with T cell-deficient BMC proliferated when they were injected into irradiated donor strain mice, whereas lymphocytes from mice reconstituted with wild-type BMC were unresponsive to donor alloantigens. Donor-specific allograft tolerance was restored when donor-type T cells were adoptively transferred to recipient mice given T cell-deficient BMC. These results show that donor T cell engraftment is required for induction of allograft tolerance, but not for creation of continuous hemopoietic chimerism after allogeneic BMT, and that a high degree of chimerism is not necessarily associated with specific allograft tolerance.  相似文献   

11.
The neonatal injection of semiallogeneic F1 spleen cells into newborn parental mice results in the induction of tolerance to the corresponding alloantigen (alloAg) and chimerism. In these F1 cell-injected mice, we have previously observed that this state of specific tolerance is associated with the development of a transient lupus-like autoimmune syndrome. In this study, we show that neonatal injection of mice with spleen cells differing from the host at major histocompatibility complex (MHC) class I, class II, class (I + II), or minor lymphocyte stimulating (Mls) alloAg induced a state of specific tolerance characterized by the absence of alloreactive CTL and/or Th cell responses in the spleen and the thymus of 6- to 12-week-old injected mice. However, in mice rendered tolerant to MHC class II or class (I + II) alloAg, the presence of high levels of IgG1 antibodies, of circulating immune complexes, of anti-ssDNA autoantibodies, and of tissue lesions were transiently observed. In these mice, an increased Ia Ag expression on lymphoid spleen cells was also detected at 1 wk. The elevated production of IgG1 and the overexpression of Ia Ag were almost completely prevented by treatment with an anti-IL-4 mAb. Such manifestations of B cell activation and autoimmunity were not observed in mice neonatally injected with F1 cells differing from the host only at MHC class I Ag. In mice neonatally tolerized to Mls Ag, a transient increase in IgG2a production and an overexpression of Ia Ag were detected without features of autoimmunity, and were prevented by anti-INF-gamma mAb treatment. In mice rendered tolerant to MHC class II, class (I + II), or Mls alloAg at birth, the manifestations of B cell activation were associated with the presence of in vivo-activated alloreactive CD4+ T cells in the spleen--but not the thymus--of 1-wk-old injected mice. Together, these results suggest that in mice neonatally injected with semiallogeneic F1 cells, the process of tolerance induction is not efficient during the early postnatal period, and could allow the maturation and peripheralization of some alloreactive CD4+ T cells, leading to transient B cell activation and, depending on the alloAg, to autoimmunity.  相似文献   

12.
Tolerance to the TNP haptenic determinant was induced by a single intravenous injection of trinitrophenylated syngeneic cells. Syngeneic spleen or thymus cells were capable of acting as carriers for tolerance induction while syngeneic bone marrow cells were not. Syngeneic spleen cells depleted of θ-positive and adherent cells were also suitable carriers for tolerance induction. Sonicated haptenated spleen cells, but not sonicated haptenated bone marrow cells induced tolerance. The ability of haptenated cells to induce tolerance was not correlated with their localization in lymphoid organs. Furthermore, cells recovered from the spleens of lethally irradiated animals reconstituted with bone marrow cells 1 week previously were incapable of inducing tolerance after hapten-modification. However, after 3 weeks, spleen cells from bone marrow-reconstituted mice had acquired the ability to induce tolerance. These results suggest that only certain types of syngeneic cells have the ability to act as carriers for tolerance induction; merely being syngeneic, and therefore presumably nonimmunogenic, is not sufficient to permit the cell to act as a carrier for tolerance induction.  相似文献   

13.
Elimination of porcine hemopoietic cells by macrophages in mice.   总被引:2,自引:0,他引:2  
The difficulty in achieving donor hemopoietic engraftment across highly disparate xenogeneic species barriers poses a major obstacle to exploring xenograft tolerance induction by mixed chimerism. In this study, we observed that macrophages mediate strong rejection of porcine hemopoietic cells in mice. Depletion of macrophages with medronate-encapsulated liposomes (M-liposomes) markedly improved porcine chimerism, and early chimerism in particular, in sublethally irradiated immunodeficient and lethally irradiated immunocompetent mice. Although porcine chimerism in the peripheral blood and spleen of M-liposome-treated mice rapidly declined after macrophages had recovered and became indistinguishable from controls by wk 5 post-transplant, the levels of chimerism in the marrow of these mice remained higher than those in control recipients at 8 wks after transplant. These results suggest that macrophages that developed in the presence of porcine chimerism were not adapted to the porcine donor and that marrow-resident macrophages did not phagocytose porcine cells. Moreover, M-liposome treatment had no effect on the survival of porcine PBMC injected into the recipient peritoneal cavity, but was essential for the migration and relocation of these cells into other tissues/organs, such as spleen, bone marrow, and peripheral blood. Together, our results suggest that murine reticuloendothelial macrophages, but not those in the bone marrow and peritoneal cavity, play a significant role in the clearance of porcine hemopoietic cells in vivo. Because injection of M-liposomes i.v. mainly depletes splenic macrophages and liver Kupffer cells, the spleen and/or liver are likely the primary sites of porcine cell clearance in vivo.  相似文献   

14.
Three strains of mice which vary in their susceptibility to induction of immune tolerance with human gamma-globulin were studied to evaluate the cellular basis for their sensitivity to induction of the unresponsive state. Tolerance induction in BALB/c mice was difficult to establish, while tolerance induction was easily achieved in C57BL/6 and CBF1 (BALB/c × C57BL/6) mice. The degree of unresponsiveness obtained with various tolerogen doses in intact C57BL/6 and CBF1 mice was reflected in the sensitivity of their thymocytes to the production of the unresponsive state. In the BALB/c mouse strain slight immune suppression observed at low tolerogen doses was correlated with bone marrow cell unresponsiveness while significant levels of tolerance observed at a high tolerogen dose was due to suppression of thymus cells. It was apparent that CBF1 mice had inherited both thymus cells and bone marrow cells which exhibited the sensitivity to induction of immune tolerance characteristic of those same cells of their C57BL/6 parent.  相似文献   

15.
Adult (8-week-old) SJL mice reach a relatively low degree of tolerance when injected with aggregate free rabbit γ-globulin (RGG). To analyze this phenomenon, we first examined indirect plaque-forming responses (PFC) in terms of participation of accessory and thymus-derived cells. Double transfer experiments were used; accessory cells were removed from donor cells by filtration over glasswool and their capacity reduced in recipients by 3 day preirradiation or by horse erythrocyte-mediated blockage. Using this type of experimental arrangement we found that the antibody response to RGG required the cooperation of accessory and thymus-derived cells. The induction of tolerance was affected by the presence of accessory cells. Preirradiated secondary recipients were reconstituted with spleen cells from accessory cell-deprived donors which had received thymus and bone marrow cells. In some experiments, the thymus and bone marrow cells were passed over glasswool. The primary recipients were left untreated or were given tolerogen. A more profound state of tolerance (reduction in plaque forming response) was the consequence of the incapacitation or removal of accessory cells. The magnitude of the reduction in PFC was directly related to the completeness of accessory cell removal and incapacitation. Responsiveness could be restored by administration of irradiated spleen cells as a source of accessory cells. The need for thymus-derived (T) cells in the antibody response was demonstrated by double transfer experiments in which the primary recipient was restored with thymus cells alone, bone marrow cells alone, or with a mixture of cell types.  相似文献   

16.
17.
Mice, rendered tolerant to rabbit gamma globulin (RGG), were immunized with RGG or with dinitrophenylated RGG (DNP40-RGG), incorporated in adjuvant. The resulting response was evaluated in terms of the half-life of trace labeled RGG (131I-RGG). An antibody response against the tolerance inducing macromolecule could be elicited with DNP40-RGG, but not with RGG. Reconstitution experiments revealed that thymus derived (T) cells from tolerant donors could cooperate with bone marrow cells from normal donors in the response elicited by DNP40-RGG, but could not effectively cooperate with bone marrow derived (B) cells from tolerant donors. Such B cells could cooperate with T cells from normal donors. The relative difference between native and chemically modified proteins played an important role in this tolerance circumvention, since analogous experiments with human instead of rabbit gamma globulin did not result in an effective response to determinants of the tolerance-inducing proteins. It was suggested that the number of effectively immunogenic determinants on DNP40-RGG was low in B and in T cells of animals tolerant to RGG and that the probability of effective cooperation was consequently extremely low. If one of the two cell types came from a normal animal and thus could respond to a large number of determinants, the probability of effective cooperation increased so as to reveal the responsiveness of the “tolerant” cell population. There was no indication that the responsiveness of the tolerant T cell population was directed against tolerance-inducing determinants.  相似文献   

18.
A gene therapy model has been designed to induce tolerance to multiple epitopes expressed in-frame on a soluble IgG fusion protein scaffold. Tolerance to the lambda repressor cI sequence p1-102 or its immunodominant epitopes (p12-26, p73-88) can be elicited when bone marrow (BM) or LPS blasts are transduced and injected into naive or even primed recipients. To explore the mechanism of tolerance, class II(-/-) (knockout, KO) BM cells were transduced with p1-102-IgG and transferred to irradiated recipients. These cells failed to induce tolerance to challenge with p1-102 epitopes, whereas transduced +/+ BM cells did. This supports the importance of class II MHC on the tolerogenic APC rather than secretion and representation in tolerogenesis. When BM cells from muMT KO mice were transfected with p12-26-IgG and injected into irradiated mice, these transduced BM cells also failed to induce tolerance to an immunodominant epitope. These results suggest the direct involvement of B cells in tolerance to p1-102 epitopes. IL-10 KO BM cells infected with a p12-26-IgG construct were still tolerogenic. Importantly, anti-CTLA-4 injections reversed tolerance in primed, but not in naive, recipients of transduced LPS blasts. These data emphasize the importance of MHC class II presentation, B cell involvement, and CTLA-4 engagement in induction and/or maintenance of tolerance.  相似文献   

19.
Methotrexate (MTX), an inhibitor of dihydrofolate reductase (DHFR), slightly induced micronuclei and this induction of micronuclei was enhanced by multiple treatments with the drug (Yamamoto et al., 1981; Hayashi et al., 1984; CSGMT/JEM.MMS, 1990). More micronuclei and chromosomal aberrations in mouse bone marrow cells were induced by multiple than by single treatment. The MTX level in mouse plasma and bone marrow showed little (or no) differences between single and quadruple treatments several hours after the injection(s). On the other hand, the DHFR activity in bone marrow cells 3 h after one and four injections was decreased to approximately 38 and 0%, respectively, of that in non-treated mice. Furthermore, the intracellular MTX level in the bone marrow cells (but not in total bone marrow) after four injections was about 10-fold higher than that after one injection. The amount of MTX bound to protein 3 h after four injections, as assayed by gel filtration (Sephadex G-25), was approximately 8-fold greater than after one injection. Therefore, the multiple-dose effects of MTX on the induction of micronuclei and chromosomal aberrations may be explained by the intracellular accumulation of MTX resulting in an enhancement of enzyme inhibition.  相似文献   

20.
Products of mouse peritoneal macrophage destruction (PMD) obtained by aseptic freezing-thawing of the cells, repeated thrice, were found to elicit in syngeneic mice injected with PMD intraperitoneally an increase of CFUs count in the hemopoietic bone marrow tissue and the spleen, as demonstrated by the Till and McCullooch technique. This proved to be a true increase since the transplatned stem cell fraction sorbed by the recipient's spleen was relatively lower in donor mice given PMD than in the control. Although PMD caused an increase of both erythropoietic (E) and granulocytopoietic-monocytic (G) colonies number, the E/G ratio was decreased; one of the mechanisms of the described effect could be the influence of PMD on the hemopoiesis-inducing microenvironment, as the same effects were obtained in mice injected repeatedly with PMD prior to the transplantation of bone marrow tissue of normal donors. Other possible mechanisms of these effects were analyzed, with consideration to the fact that in experiments with preincubation of bone marrow tissue with PMD prior to injection to the lethally irradiated mice no direct stimulating influence of PMD on the stem cell could be revealed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号