首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human multidrug resistance-associated protein(MRP1) is an ATP-dependent efflux pump that transports anionic conjugates, and hydrophobic compounds in a glutathione dependent manner. Similar to the other, well-characterized multidrug transporter P-gp, MRP1 comprises two nucleotide-binding domains (NBDs) in addition to transmembrane domains. However, whereas the NBDs of P-gp have been shown to be functionally equivalent, those of MRP1 differ significantly. The isolated NBDs of MRP1 have been characterized in Escherichia coli as fusions with either the glutathione-S-transferase (GST) or the maltose-binding domain (MBP). The nonfused NBD1 was obtained by cleavage of the fusion protein with thrombin. The GST-fused forms of NBD1 and NBD2 hydrolyzed ATP with an apparent K(m) of 340 microm and a V(max) of 6.0 nmol P(I) x mg-1 x min-1, and a K(m) of 910 microm ATP and a V(max) of 7.5 nmol P(I) x mg-1 x min-1, respectively. Remarkably, S-decyl-glutathione, a conjugate specifically transported by MRP1 and MRP2, was able to stimulate the ATPase activities of the isolated NBDs more than 2-fold in a concentration-dependent manner. However,the stimulation of the ATPase activity was found to coincide with the formation of micelles by S-decyl-glutathione. Equivalent stimulation of ATPase activity could be obtained by surfactants with similar critical micelle concentrations.  相似文献   

2.
ATP-sensitive K+ (KATP) channels are unique metabolic sensors formed by association of Kir6.2, an inwardly rectifying K+ channel, and the sulfonylurea receptor SUR, an ATP binding cassette protein. We identified an ATPase activity in immunoprecipitates of cardiac KATP channels and in purified fusion proteins containing nucleotide binding domains NBD1 and NBD2 of the cardiac SUR2A isoform. NBD2 hydrolyzed ATP with a twofold higher rate compared to NBD1. The ATPase required Mg2+ and was insensitive to ouabain, oligomycin, thapsigargin, or levamisole. K1348A and D1469N mutations in NBD2 reduced ATPase activity and produced channels with increased sensitivity to ATP. KATP channel openers, which bind to SUR, promoted ATPase activity in purified sarcolemma. At higher concentrations, openers reduced ATPase activity, possibly through stabilization of MgADP at the channel site. K1348A and D1469N mutations attenuated the effect of openers on KATP channel activity. Opener-induced channel activation was also inhibited by the creatine kinase/creatine phosphate system that removes ADP from the channel complex. Thus, the KATP channel complex functions not only as a K+ conductance, but also as an enzyme regulating nucleotide-dependent channel gating through an intrinsic ATPase activity of the SUR subunit. Modulation of the channel ATPase activity and/or scavenging the product of the ATPase reaction provide novel means to regulate cellular functions associated with KATP channel opening.  相似文献   

3.
Activating mutations in the pore-forming Kir6.2 (KCNJ11) and regulatory sulphonylurea receptor SUR1 (ABCC8) subunits of the K(ATP) channel are a common cause of transient neonatal diabetes mellitus (TNDM). We identified a new TNDM mutation (R826W) in the first nucleotide-binding domain (NBD1) of SUR1. The mutation was found in a region that heterodimerizes with NBD2 to form catalytic site 2. Functional analysis showed that this mutation decreases MgATP hydrolysis by purified maltose-binding protein MBP-NBD1 fusion proteins. Inhibition of ATP hydrolysis by MgADP or BeF was not changed. The results indicate that the ATPase cycle lingers in the post-hydrolytic MgADP.P(i)-bound state, which is associated with channel activation. The extent of MgADP-dependent activation of K(ATP) channel activity was unaffected by the R826W mutation, but the time course of deactivation was slowed. Channel inhibition by MgATP was reduced, leading to an increase in resting whole-cell currents. In pancreatic beta cells, this would lead to less insulin secretion and thereby diabetes.  相似文献   

4.
5.
Fundamental to the metabolic sensor function of ATP-sensitive K(+) (K(ATP)) channels is the sulfonylurea receptor. This ATP-binding cassette protein, which contains nucleotide binding domains (NBD1 and NBD2) with conserved Walker motifs, regulates the ATP sensitivity of the pore-forming Kir6.2 subunit. Although NBD2 hydrolyzes ATP, a property essential in K(ATP) channel gating, the role of NBD1, which has limited catalytic activity, if at all, remains less understood. Here, we provide functional evidence that cooperative interaction, rather than the independent contribution of each NBD, is critical for K(ATP) channel regulation. Gating of cardiac K(ATP) channels by distinct conformations in the NBD2 ATPase cycle, induced by gamma-phosphate analogs, was disrupted by point mutation not only of the Walker motif in NBD2 but also in NBD1. Cooling membrane patches to decelerate the intrinsic ATPase activity counteracted ATP-induced K(ATP) channel inhibition, an effect that mimicked stabilization of the MgADP-bound posthydrolytic state at NBD2 by the gamma-phosphate analog orthovanadate. Temperature-induced channel activation was abolished by mutations that either prevent stabilization of MgADP at NBD2 or ATP at NBD1. These findings provide a paradigm of K(ATP) channel gating based on integration of both NBDs into a functional unit within the multimeric channel complex.  相似文献   

6.
The human multidrug resistance protein 3 (MDR3/ABCB4) belongs to the ubiquitous family of ATP-binding cassette (ABC) transporters and is located in the canalicular membrane of hepatocytes. There it flops the phospholipids of the phosphatidylcholine (PC) family from the inner to the outer leaflet. Here, we report the characterization of wild type MDR3 and the Q1174E mutant, which was identified previously in a patient with progressive familial intrahepatic cholestasis type 3 (PFIC-3). We expressed different variants of MDR3 in the yeast Pichia pastoris, purified the proteins via tandem affinity chromatography, and determined MDR3-specific ATPase activity in the presence or absence of phospholipids. The ATPase activity of wild type MDR3 was stimulated 2-fold by liver PC or 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine lipids. Furthermore, the cross-linking of MDR3 with a thiol-reactive fluorophore blocked ATP hydrolysis and exhibited no PC stimulation. Similarly, phosphatidylethanolamine, phosphatidylserine, and sphingomyelin lipids did not induce an increase of wild type MDR3 ATPase activity. The phosphate analogues beryllium fluoride and aluminum fluoride led to complete inhibition of ATPase activity, whereas orthovanadate inhibited exclusively the PC-stimulated ATPase activity of MDR3. The Q1174E mutation is located in the nucleotide-binding domain in direct proximity of the leucine of the ABC signature motif and extended the X loop, which is found in ABC exporters. Our data on the Q1174E mutant demonstrated basal ATPase activity, but PC lipids were incapable of stimulating ATPase activity highlighting the role of the extended X loop in the cross-talk of the nucleotide-binding domain and the transmembrane domain.  相似文献   

7.
The ATP-sensitive potassium (K(ATP)(+)) channel is crucial for the regulation of insulin secretion from the pancreatic beta-cell, and mutations in either the sulfonylurea receptor type 1 (SUR1) or Kir6. 2 subunit of this channel can cause persistent hyperinsulinemic hypoglycemia of infancy (PHHI). We analyzed the functional consequences of the PHHI missense mutation R1420C, which lies in the second nucleotide-binding fold (NBF2) of SUR1. Mild tryptic digestion of SUR1 after photoaffinity labeling allowed analysis of the nucleotide-binding properties of NBF1 and NBF2. Labeling of NBF1 with 8-azido-[alpha-(32)P]ATP was inhibited by MgATP and MgADP with similar K(i) for wild-type SUR1 and SUR1-R1420C. However, the MgATP and MgADP affinities of NBF2 of SUR1-R1420C were about 5-fold lower than those of wild-type SUR1. MgATP and MgADP stabilized 8-azido-ATP binding at NBF1 of wild-type SUR1 by interacting with NBF2, but this cooperative nucleotide binding was not observed for SUR1-R1420C. Studies on macroscopic currents recorded in inside-out membrane patches revealed that the SUR1-R1420C mutation exhibits reduced expression but does not affect inhibition by ATP or tolbutamide or activation by diazoxide. However, co-expression with Kir6.2-R50G, which renders the channel less sensitive to ATP inhibition, revealed that the SUR1-R1420C mutation increases the EC(50) for MgADP activation from 74 to 197 microm. We suggest that the lower expression of the mutant channel and the reduced affinity of NBF2 for MgADP may lead to a smaller K(ATP)(+) current in R1420C-PHHI beta-cells and thereby to the enhanced insulin secretion. We also propose a new model for nucleotide activation of K(ATP)(+) channels.  相似文献   

8.
Saccharomyces cerevisiae Atm1p has been cloned, over-expressed and purified from a yeast expression system. The sequence includes both the soluble ATPase and transmembrane-spanning domains. With the introduction of an N-terminal Kozak sequence and a C-terminal (His)(6)-tag, a yield of 1 mg of Atm1p was obtained from 3 g wet yeast cells, which is comparable to other membrane-associated proteins isolated from eukaryotic expression systems. The ATPase activity of Atm1p is sensitive to sodium vanadate, a P-type ATPase inhibitor, with an IC(50) of 4 microM. MgADP is a product inhibitor for Atm1p with an IC(50) of 0.9 mM. The Michaelis-Menten constants V(max), K(M) and k(cat) of Atm1p were measured as 8.7+/-0.3 microM/min, 107+/-16 microM and 1.24+/-0.06 min(-1), respectively. A plot of ATPase activity versus concentration of Atm1p exhibits a nonlinear relationship, suggesting an allosteric response and an important role for the transmembrane domain in mediating both ATP hydrolysis and MgADP release. The metal dependence of Atm1p ATPase activity demonstrated a reactivity order of Mg(2+)>Mn(2+)>Co(2+), while each divalent ion was found to be inhibitory at higher concentrations. The activation and inhibitory effect of phospholipids suggest that formation of a lipid-micelle complex is important for enzymatic activity and stability. Structural analysis of Atm1p by CD spectroscopy suggested a similarity of secondary structure to that found for other members of this ABC protein family.  相似文献   

9.
Biswas EE  Biswas SB 《Biochemistry》2000,39(51):15879-15886
The rod outer segment ATP binding cassette (ABC) transporter protein (ABCR) plays an important role in retinal rod cells presumably transporting retinal. Genetic studies in humans have linked mutations in the ABCR gene to a number of inherited retinal diseases particularly Stargardt macular degeneration and age-related macular degeneration (ARMD). The ABCR protein is characterized by two nucleotide binding domains and two transmembrane domains, each consisting of six membrane-spanning helices. We have cloned and expressed the 376 amino acid (aa) C-terminal end of this protein (amino acid residues 1898-2273) containing the second nucleotide binding domain (NBD2) with a purification tag at its amino terminus. The expressed protein was found to be soluble and was purified using a rapid and high-yield single-step procedure. The purified protein was monomeric and migrated as a 43 kDa protein in SDS-PAGE. The purified NBD2 protein had strong ATPase activity with a K(m) of 631 microM and V(max) of 144 nmol min(-1) mg(-1). This ATPase activity on normalization was kinetically comparable to that observed for purified and reconstituted native ABCR. Nucleotide inhibition studies suggest that the binding of NBD2 is specific for ATP/dATP, and that none of the other ribonucleotides appeared to compete for binding at this site. These studies demonstrate that cloned and expressed NBD2 protein is a fully functional ATPase in the absence of the remainder of the molecule. The level of ATPase activity was comparable to that of trans-retinal-stimulated ABCR ATPase. The NBD2 expression plasmid was used to generate a Leu2027Phe mutation associated with Stargardt disease. Analysis of the ATPase activity of the mutant protein demonstrated that it had a 14-fold increase in binding affinity (K(m) = 46 microM) with a corresponding 9-fold decrease in the rate of hydrolysis (V(max) = 16.6 nmol min(-1) mg(-1)), indicating a significant alteration of the ATPase function. It also provided a molecular basis of Stargardt disease involving this mutation.  相似文献   

10.
The yeast Pdr5 multidrug transporter is an important member of the ATP-binding cassette superfamily of proteins. We describe a novel mutation (S558Y) in transmembrane helix 2 of Pdr5 identified in a screen for suppressors that eliminated Pdr5-mediated cycloheximide hyper-resistance. Nucleotides as well as transport substrates bind to the mutant Pdr5 with an affinity comparable with that for wild-type Pdr5. Wild-type and mutant Pdr5s show ATPase activity with comparable K(m)((ATP)) values. Nonetheless, drug sensitivity is equivalent in the mutant pdr5 and the pdr5 deletion. Finally, the transport substrate clotrimazole, which is a noncompetitive inhibitor of Pdr5 ATPase activity, has a minimal effect on ATP hydrolysis by the S558Y mutant. These results suggest that the drug sensitivity of the mutant Pdr5 is attributable to the uncoupling of NTPase activity and transport. We screened for amino acid alterations in the nucleotide-binding domains that would reverse the phenotypic effect of the S558Y mutation. A second-site mutation, N242K, located between the Walker A and signature motifs of the N-terminal nucleotide-binding domain, restores significant function. This region of the nucleotide-binding domain interacts with the transmembrane domains via the intracellular loop-1 (which connects transmembrane helices 2 and 3) in the crystal structure of Sav1866, a bacterial ATP-binding cassette drug transporter. These structural studies are supported by biochemical and genetic evidence presented here that interactions between transmembrane helix 2 and the nucleotide-binding domain, via the intracellular loop-1, may define at least part of the translocation pathway for coupling ATP hydrolysis to drug transport.  相似文献   

11.
In a previous paper [Gould, East, Froud, McWhirter, Stefanova & Lee (1986) Biochem. J. 237, 217-227] we presented a kinetic model for the activity of the Ca2+ + Mg2+-activated ATPase of sarcoplasmic reticulum. Here we extend the model to account for the effects on ATPase activity of Mg2+, cations and anions. We find that Mg2+ concentrations in the millimolar range inhibit ATPase activity, which we attribute to competition between Mg2+ and MgATP for binding to the nucleotide-binding site on the E1 and E2 conformations of the ATPase and on the phosphorylated forms of the ATPase. Competition is also suggested between Mg2+ and MgADP for binding to the phosphorylated form of the ATPase. ATPase activity is increased by low concentrations of K+, Na+ and NH4+, but inhibited by higher concentrations. It is proposed that these effects follow from an increase in the rate of dephosphorylation but a decrease in the rate of the conformational transition E1'PCa2-E2'PCa2 with increasing cation concentration. Li+ and choline+ decrease ATPase activity. Anions also decrease ATPase activity, the effects of I- and SCN- being more marked than that of Cl-. These effects are attributed to binding at the nucleotide-binding site, with a decrease in binding affinity and an increase in 'off' rate constant for the nucleotide.  相似文献   

12.
The aim of this study was the expression and production in Escherichia coli of the nucleotide-binding domains (NBDs) of the human ABCA1 transporter, in a soluble, non-denatured form. To increase the protein solubility, and avoid expression in E. coli inclusion bodies, we extended the length of the expressed NBD domains, to include proximal domains. The corresponding cDNA constructs were used to express the N-terminal His-tagged WT and mutant proteins, which were purified by Ni(2+)-affinity chromatography. Optimal expression of soluble proteins was obtained for constructs including the NBD, the downstream 80-residue domain, and about 20 upstream residues. The size homogeneity of WT and mutant NBDs was determined by Dynamic Light Scattering, and ATP-binding constants and ATPase activities were measured. The NBD1 and NBD2 domains bound ATP with comparable affinity. The ATPase activity of WT His-NBD1 was about three times higher than that of NBD2 and amounted to 5913 compared to 1979 nmol Pi/micromol NBD/min for WT His-NBD2. All engineered mutants had comparable ATPase activity to the corresponding WT protein. The optimisation of the length of the expressed proteins, based upon the boundary prediction of NBDs and neighbour domains, enables the expression and purification of soluble ABCA1 NBDs, with high ATPase activity. This approach should prove useful for the study of the structural and functional properties of the NBDs and other domains of the ABC transporters.  相似文献   

13.
K(ATP) channels, comprised of the pore-forming protein Kir6.x and the sulfonylurea receptor SURx, are regulated in an interdependent manner by adenine nucleotides, PIP2, and sulfonylureas. To gain insight into these interactions, we investigated the effects of mutating positively charged residues in Kir6.2, previously implicated in the response to PIP2, on channel regulation by adenine nucleotides and the sulfonylurea glyburide. Our data show that the Kir6.2 "PIP2-insensitive" mutants R176C and R177C are not reactivated by MgADP after ATP-induced inhibition and are also insensitive to glyburide. These results suggest that R176 and R177 are required for functional coupling to SUR1, which confers MgADP and sulfonylurea sensitivity to the K(ATP) channel. In contrast, the R301C and R314C mutants, which are also "PIP2-insensitive," remained sensitive to stimulation by MgADP in the absence of ATP and were inhibited by glyburide. Based on these findings, as well as previous data, we propose a model of the K(ATP) channel whereby in the presence of ATP, the R176 and R177 residues on Kir6.2 form a specific site that interacts with NBF1 bound to ATP on SUR1, promoting channel opening by counteracting the inhibition by ATP. This interaction is facilitated by binding of MgADP to NBF2 and blocked by binding of sulfonylureas to SUR1. In the absence of ATP, since K(ATP) channels are not blocked by ATP, they do not require the counteracting effect of NBF1 interacting with R176 and R177 to open. Nevertheless, channels in this state remain activated by MgADP. This effect may be explained by a direct stimulatory interaction of NBF2/MgADP moiety with another region of Kir6.2 (perhaps the NH2 terminus), or by NBF2/MgADP still promoting a weak interaction between NBF1 and Kir6.2 in the absence of ATP. The region delimited by R301 and R314 is not involved in the interaction with NBF1 or NBF2, but confers additional PIP2 sensitivity.  相似文献   

14.
In Gram-positive bacteria, a large subfamily of dual ATP-binding cassette proteins confers acquired or intrinsic resistance to macrolide, lincosamide, and streptogramin antibiotics by a far from well understood mechanism. Here, we report the first biochemical characterization of one such protein, Vga(A), which is involved in streptogramin A (SgA) resistance among staphylococci. Vga(A) is composed of two nucleotide-binding domains (NBDs), separated by a charged linker, with a C-terminal extension and without identified transmembrane domains. Highly purified Vga(A) displays a strong ATPase activity (K(m) = 78 mum, V(m) = 6.8 min(-1)) that was hardly inhibited by orthovanadate. Using mutants of the conserved catalytic glutamate residues, the two NBDs of Vga(A) were shown to contribute unequally to the total ATPase activity, the mutation at NBD2 being more detrimental than the other. ATPase activity of both catalytic sites was essential for Vga(A) biological function because each single Glu mutant was unable to confer SgA resistance in the staphylococcal host. Of great interest, Vga(A) ATPase was specifically inhibited in a non-competitive manner by the SgA substrate, pristinamycin IIA (PIIA). A deletion of the last 18 amino acids of Vga(A) slightly affected the ATPase activity without modifying the PIIA inhibition values. In contrast, this deletion reduced 4-fold the levels of SgA resistance. Altogether, our results suggest a role for the C terminus in regulation of the SgA antibiotic resistance mechanism conferred by Vga(A) and demonstrate that this dual ATP-binding cassette protein interacts directly and specifically with PIIA, its cognate substrate.  相似文献   

15.
The ABC transporter Mdl1p, a structural and functional homologue of the transporter associated with antigen processing (TAP) plays an important role in intracellular peptide transport from the mitochondrial matrix of Saccharomyces cerevisiae. To characterize the ATP hydrolysis cycle of Mdl1p, the nucleotide-binding domain (NBD) was overexpressed in Escherichia coli and purified to homogeneity. The isolated NBD was active in ATP binding and hydrolysis with a turnover of 25 ATP per minute and a Km of 0.6 mm and did not show cooperativity in ATPase activity. However, the ATPase activity was non-linearly dependent on protein concentration (Hill coefficient of 1.7), indicating that the functional state is a dimer. Dimeric catalytic transition states could be trapped either by incubation with orthovanadate or beryllium fluoride, or by mutagenesis of the NBD. The nucleotide composition of trapped intermediate states was determined using [alpha-32P]ATP and [gamma-32P]ATP. Three different dimeric intermediate states were isolated, containing either two ATPs, one ATP and one ADP, or two ADPs. Based on these experiments, it was shown that: (i) ATP binding to two NBDs induces dimerization, (ii) in all isolated dimeric states, two nucleotides are present, (iii) phosphate can dissociate from the dimer, (iv) both nucleotides are hydrolyzed, and (v) hydrolysis occurs in a sequential mode. Based on these data, we propose a processive-clamp model for the catalytic cycle in which association and dissociation of the NBDs depends on the status of bound nucleotides.  相似文献   

16.
Incorporation of 4.5 nmol fluorescein isothiocyanate/mg rabbit sarcoplasmic reticulum, or of 7.4 nmol/mg purified ATPase, was sufficient to inhibit the activity completely. These results are not consistent with the suggestion (Pick, U. and Karlish, S.J.D. (1980) Biochim. Biophys. Acta 626, 255-261) that 2 mol ATPase were inhibited by each mole of reagent incorporated. A single labelled peptide was purified from the inhibited ATPase and it was shown that Lys 3/190, 10 residues from the N-terminus of tryptic fragment B, was the reactive lysine residue. This site is close to a potential nucleotide-binding fold in the ATPase sequence. A similar peptide showing only 2 conservative replacements was isolated from the sarcoplasmic reticulum of the lobster.  相似文献   

17.
The mammalian (Na+,K+), Ca2+-, and (H+,K+)-ATPases contain a well-characterized lysine residue that reacts with fluorescein 5'-isothiocyanate (FITC); enzymatic activity is protected by ATP, suggesting that the residue is located in or near the nucleotide-binding domain. In this study, the plasma-membrane H+-ATPase of Neurospora crassa is also shown to be sensitive to FITC. The reaction occurs with pseudo first-order kinetics, has a pKa of 8.0, and is stimulated by Mg2+. Enzymatic activity is protected by MgADP with a Kd of 0.2-0.3 mM, close to the Ki with which MgADP serves as a competitive inhibitor of ATP hydrolysis. A tryptic peptide labeled with FITC in the absence, but not in the presence, of MgADP has been isolated and sequenced. The FITC-sensitive residue is Lys474, located in a region that exhibits significant homology with the mammalian cation-transporting ATPases.  相似文献   

18.
Binding of ADP and orthophosphate during the ATPase reaction of nitrogenase   总被引:1,自引:0,他引:1  
The pre-steady-state ATPase activity of nitrogenase from Azotobacter vinelandii was investigated. By using a rapid-quench technique, it has been demonstrated that with the oxidized nitrogenase complex the same burst reaction of MgATP hydrolysis occurs as observed with the reduced complex, namely 6-8 mol orthophosphate released/mol MoFe protein. It is concluded that the pre-steady-state ATPase activity is independent of electron transfer from Fe protein to MoFe protein. Results obtained from gel centrifugation experiments showed that during the steady state of reductant-independent ATP hydrolysis there is a slow dissociation of one molecule of MgADP from the nitrogenase proteins (koff less than or equal to 0.2 s-1); the second MgADP molecule dissociates much faster (koff greater than or equal to 0.6 s-1). Under the same conditions orthophosphate was found to be associated with the nitrogenase proteins. The rate of dissociation of orthophosphate from the nitrogenase complex, as estimated from the gel centrifugation experiments, is in the same order of magnitude as the steady-state turnover rate of the reductant-independent ATPase activity (0.6 mol Pi formed X s-1 X mol Av2(-1) at 22 degrees C). These data are consistent with dissociation of orthophosphate or MgADP being rate-limiting during nitrogenase-catalyzed reductant-independent ATP hydrolysis.  相似文献   

19.
The 97-kDa valosin-containing protein (p97-VCP) plays a role in a wide variety of cellular activities, many of which are regulated by the ubiquitin-proteasome (Ub-Pr)-mediated degradation pathway. We previously demonstrated that VCP binds to multi-ubiquitin chains and may act as a molecular chaperone that targets the ubiquitinated substrates to the proteasome for degradation. In this report, we show that although the ubiquitin chain-binding activity, carried out by the N-terminal 200 residues (N domain), is necessary for the degradation of proteasome substrates, it is not sufficient. Using in vitro degradation assays, we demonstrated that the entire VCP molecule, consisting of the N domain and two ATPase domains D1 and D2, is required for mediating the Ub-Pr degradation. The ATPase activity of VCP requires Mg(2+), and is stimulated by high temperature. Under optimal conditions, VCP hydrolyzes ATP with a K(m) of approximately 0.33 mm and a V(max) of approximately 0.52 nmol P(i) min(-1) microg(-1). At a physiological temperature, mutation in D2 significantly inhibits the ATPase activity, while that in D1 has little effect. Interestingly, mutations in D1, but not D2, abolish the heat-stimulated ATPase activity. Thus, we provide the first demonstration that the ATPase activity of VCP is required for mediating the Ub-Pr degradation, that D2 accounts for the major ATPase activity, and that D1 contributes to the heat-induced activity.  相似文献   

20.
ATP-sensitive K(+) (K(ATP)) channels modulate their activity as a function of inhibitory ATP and stimulatory Mg-nucleotides. They are constituted by two proteins: a pore-forming K(+) channel subunit (Kir6.1, Kir6.2) and a regulatory sulfonylurea receptor (SUR) subunit, an ATP-binding cassette (ABC) transporter that confers MgADP stimulation to the channel. Channel regulation by MgADP is dependent on nucleotide interaction with the cytoplasmic nucleotide binding folds (NBF1 and NBF2) of the SUR subunit. Crystal structures of bacterial ABC proteins indicate that NBFs form as dimers, suggesting that NBF1-NBF2 heterodimers may form in SUR and other eukaryotic ABC proteins. We have modeled SUR1 NBF1 and NBF2 as a heterodimer, and tested the validity of the predicted dimer interface by systematic mutagenesis. Engineered cysteine mutations in this region have significant effects, both positive and negative, on MgADP stimulation of K(ATP) channels in excised patches and on macroscopic channel activity in intact cells. Additionally, the mutations cluster in the model structure according to their functional effect, such that patterns of alteration emerge. Of note, three gain-of-function mutations, leading to MgADP hyperstimulation of the channel, are located in the D-loop region at the center of the predicted dimer interface. Overall, the data support the idea that SUR1 NBFs assemble as heterodimers and that this interaction is functionally critical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号