首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite its key role in Alzheimer pathogenesis, the physiological function(s) of the amyloid precursor protein (APP) and its proteolytic fragments are still poorly understood. Previously, we generated APPsα knock-in (KI) mice expressing solely the secreted ectodomain APPsα. Here, we generated double mutants (APPsα-DM) by crossing APPsα-KI mice onto an APLP2-deficient background and show that APPsα rescues the postnatal lethality of the majority of APP/APLP2 double knockout mice. Surviving APPsα-DM mice exhibited impaired neuromuscular transmission, with reductions in quantal content, readily releasable pool, and ability to sustain vesicle release that resulted in muscular weakness. We show that these defects may be due to loss of an APP/Mint2/Munc18 complex. Moreover, APPsα-DM muscle showed fragmented post-synaptic specializations, suggesting impaired postnatal synaptic maturation and/or maintenance. Despite normal CNS morphology and unaltered basal synaptic transmission, young APPsα-DM mice already showed pronounced hippocampal dysfunction, impaired spatial learning and a deficit in LTP that could be rescued by GABA(A) receptor inhibition. Collectively, our data show that APLP2 and APP are synergistically required to mediate neuromuscular transmission, spatial learning and synaptic plasticity.  相似文献   

2.
The cytoskeleton forms the backbone of neuronal architecture, sustaining its form and size, subcellular compartments and cargo logistics. The synaptic cytoskeleton can be categorized in the microtubule-based core cytoskeleton and the cortical membrane skeleton. While central microtubules form the fundamental basis for the construction of elaborate neuronal processes, including axons and synapses, cortical actin filaments are generally considered to function as mediators of synapse dynamics and plasticity. More recently, the submembranous network of spectrin and ankyrin molecules has been involved in the regulation of synaptic stability and maintenance. Disruption of the synaptic cytoskeleton primarily affects the stability and maturation of synapses but also secondarily disturbs neuronal communication. Consequently, a variety of inherited diseases are accompanied by cytoskeletal malfunctions, including spastic paraplegias, spinocerebellar ataxias, and mental retardation. Since the primary reasons for many of these diseases are still unknown model organisms with a conserved repertoire of cytoskeletal elements help to understand the underlying biological mechanisms. The astonishing technical as well as genetic accessibility of synapses in Drosophila has shown that loss of the cytoskeletal architecture leads to axonal transport defects, synaptic maturation deficits, and retraction of synaptic boutons, before synaptic terminals finally detach from their target cells, suggesting that similar processes could be involved in human neuronal diseases.  相似文献   

3.
The presenilin genes harbor approximately 90% of mutations linked to early-onset familial Alzheimer's disease (FAD), but how these mutations cause the disease is still being debated. Genetic analysis in Drosophila and mice demonstrate that presenilin plays essential roles in synaptic function, learning and memory, as well as neuronal survival in the adult brain, and the FAD-linked mutations alter the normal function of presenilin in these processes. Presenilin has also been reported to regulate the calcium homeostasis of intracellular stores, and presynaptic presenilin controls neurotransmitter release and long-term potentiation through modulation of calcium release from intracellular stores. In this review, we highlight recent advances in deciphering the role of presenilin in synaptic function, calcium regulation and disease, and pose key questions for future studies.  相似文献   

4.
Abstract: Presenilin 1 is an integral membrane protein specifically cleaved to yield an N-terminal and a C-terminal fragment, both membrane-associated. More than 40 presenilin 1 mutations have been linked to early-onset familial Alzheimer disease, although the mechanism by which these mutations induce the Alzheimer disease neuropathology is not clear. Presenilin 1 is expressed predominantly in neurons, suggesting that the familial Alzheimer disease mutants may compromise or change the neuronal function(s) of the wild-type protein. To elucidate the function of this protein, we studied its expression in neuronal vesicular systems using as models the chromaffin granules of the neuroendocrine chromaffin cells and the major categories of brain neuronal vesicles, including the small clear-core synaptic vesicles, the large dense-core vesicles, and the somatodendritic and nerve terminal clathrin-coated vesicles. Both the N- and C-terminal presenilin 1 proteolytic fragments were greatly enriched in chromaffin granule and neuronal large dense-core vesicle membranes, indicating that these fragments are targeted to these vesicles and may regulate the large dense-core vesicle-mediated secretion of neuropeptides and neurotransmitters at synaptic sites. The presenilin 1 fragments were also enriched in the somatodendritic clathrin-coated vesicle membranes, suggesting that they are targeted to the somatodendritic membrane, where they may regulate constitutive secretion and endocytosis. In contrast, these fragments were not enriched in the small clear-core synaptic vesicle or in the nerve terminal clathrin-coated vesicle membranes. Taken together, our data indicate that presenilin 1 proteolytic fragments are targeted to specific populations of neuronal vesicles where they may regulate vesicular function. Although full-length presenilin 1 was present in crude homogenates, it was not detected in any of the vesicles studied, indicating that, unlike the presenilin fragments, full-length protein may not have a vesicular function.  相似文献   

5.
An important body of evidence documents the differential expression of ion channels in brains, suggesting they are essential to endow particular brain structures with specific physiological properties. Because of their role in correlating inputs and outputs in neurons, modulation of voltage-dependent ion channels (VDICs) can profoundly change neuronal network dynamics and performance, and may represent a fundamental mechanism for behavioral plasticity, one that has received less attention in learning and memory studies. Revisiting three paradigmatic mutations altering olfactory learning and memory in Drosophila (dunce, leonardo, amnesiac) a link was established between each mutation and the operation of VDICs in Kenyon cells, the intrinsic neurons of the mushroom bodies (MBs). In Drosophila, MBs are essential to the emergence of olfactory associative learning and retention. Abnormal ion channel operation might underlie failures in neuronal physiology, and be crucial to understand the abnormal associative learning and retention phenotypes the mutants display. We also discuss the only case in which a mutation in an ion channel gene (shaker) has been directly linked to olfactory learning deficits. We analyze such evidence in light of recent discoveries indicating an unusual ion current profile in shaker mutant MB intrinsic neurons. We anticipate that further studies of acquisition and retention mutants will further confirm a link between such mutations and malfunction of specific ion channel mechanisms in brain structures implicated in learning and memory.  相似文献   

6.
Li J  Ashley J  Budnik V  Bhat MA 《Neuron》2007,55(5):741-755
Neurexins have been proposed to function as major mediators of the coordinated pre- and postsynaptic apposition. However, key evidence for this role in vivo has been lacking, particularly due to gene redundancy. Here, we have obtained null mutations in the single Drosophila neurexin gene (dnrx). dnrx loss of function prevents the normal proliferation of synaptic boutons at glutamatergic neuromuscular junctions, while dnrx gain of function in neurons has the opposite effect. DNRX mostly localizes to the active zone of presynaptic terminals. Conspicuously, dnrx null mutants display striking defects in synaptic ultrastructure, with the presence of detachments between pre- and postsynaptic membranes, abnormally long active zones, and increased number of T bars. These abnormalities result in corresponding alterations in synaptic transmission with reduced quantal content. Together, our results provide compelling evidence for an in vivo role of neurexins in the modulation of synaptic architecture and adhesive interactions between pre- and postsynaptic compartments.  相似文献   

7.
Synaptojanin is recruited by endophilin to promote synaptic vesicle uncoating   总被引:11,自引:0,他引:11  
We describe the isolation and characterization of Drosophila synaptojanin (synj) mutants. synj encodes a phosphatidylinositol phosphatase involved in clathrin-mediated endocytosis. We show that Synj is specifically localized to presynaptic terminals and is associated with synaptic vesicles. The electrophysiological and ultrastructural defects observed in synj mutants are strikingly similar to those found in endophilin mutants, and Synj and Endo colocalize and interact biochemically. Moreover, synj; endo double mutant synaptic terminals exhibit properties that are very similar to terminals of each single mutant, and overexpression of Endophilin can partially rescue the functional defects in partial loss-of-function synj mutants. Interestingly, Synj is mislocalized and destabilized at synapses devoid of Endophilin, suggesting that Endophilin recruits and stabilizes Synj on newly formed vesicles to promote vesicle uncoating. Our data also provide further evidence that kiss-and-run is able to maintain neurotransmitter release when synapses are not extensively challenged.  相似文献   

8.
Mutations in the latheo (lat) gene disrupt associative learning in Drosophila , but a role for LAT in regulating neuronal function has not been demonstrated. Here, we report that LAT plays a central role in regulating Ca2(+)- and activity-dependent synaptic plasticity. Immunological localization of the LAT protein indicates it is present at synaptic connections of the larval neuromuscular junction (NMJ) and is enriched in presynaptic boutons. Basal synaptic transmission amplitude at the lat mutant NMJ is elevated 3- to 4-fold, and Ca2+ dependence of transmission is significantly reduced. Multiple forms of synaptic facilitation and posttetanic potentiation (PTP) are strongly depressed or absent at the mutant synapse. Our results suggest that LAT is a novel presynaptic protein with a role in the Ca2(+)-dependent synaptic modulation mechanisms necessary for behavioral plasticity.  相似文献   

9.
Ozdowski EF  Gayle S  Bao H  Zhang B  Sherwood NT 《Genetics》2011,189(1):123-135
Microtubules are dynamic structures that must elongate, disassemble, and be cleaved into smaller pieces for proper neuronal development and function. The AAA ATPase Spastin severs microtubules along their lengths and is thought to regulate the balance between long, stable filaments and shorter fragments that seed extension or are transported. In both Drosophila and humans, loss of Spastin function results in reduction of synaptic connections and disabling motor defects. To gain insight into how spastin is regulated, we screened the Drosophila melanogaster genome for deletions that modify a spastin overexpression phenotype, eye size reduction. One suppressor region deleted p21-activated kinase 3 (pak3), which encodes a member of the Pak family of actin-regulatory enzymes, but whose in vivo function is unknown. We show that pak3 mutants have only mild synaptic defects at the larval neuromuscular junction, but exhibit a potent genetic interaction with spastin mutations. Aberrant bouton morphology, microtubule distribution, and synaptic transmission caused by spastin loss of function are all restored to wild type when pak3 is simultaneously reduced. Neuronal overexpression of pak3 induces actin-rich thin projections, suggesting that it functions in vivo to promote filopodia during presynaptic terminal arborization. pak3 therefore regulates synapse development in vivo, and when mutated, suppresses the synaptic defects that result from spastin loss.  相似文献   

10.
Neurexins are a large family of neuronal plasma membrane proteins, which function as trans-synaptic receptors during synaptic differentiation. The binding of presynaptic neurexins to postsynaptic partners, such as neuroligins, has been proposed to participate in a signaling pathway that regulates synapse formation/stabilization. The identification of mutations in neurexin genes associated with autism and mental retardation suggests that dysfunction of neurexins may underlie synaptic defects associated with brain disorders. However, the mechanisms that regulate neurexin function at synapses are still unclear. Here, we show that neurexins are proteolytically processed by presenilins (PS), the catalytic components of the γ-secretase complex that mediates the intramembraneous cleavage of several type I membrane proteins. Inhibition of PS/γ-secretase by using pharmacological and genetic approaches induces a drastic accumulation of neurexin C-terminal fragments (CTFs) in cultured rat hippocampal neurons and mouse brain. Neurexin-CTFs accumulate mainly at the presynaptic terminals of PS conditional double knockout (PS cDKO) mice lacking both PS genes in glutamatergic neurons of the forebrain. The fact that loss of PS function enhances neurexin accumulation at glutamatergic terminals mediated by neuroligin-1 suggests that PS regulate the processing of neurexins at glutamatergic synapses. Interestingly, presenilin 1 (PS1) is recruited to glutamatergic terminals mediated by neuroligin-1, thus concentrating PS1 at terminals containing β-neurexins. Furthermore, familial Alzheimer's disease (FAD)-linked PS1 mutations differentially affect β-neurexin-1 processing. Expression of PS1 M146L and PS1 H163R mutants in PS-/- cells rescues the processing of β-neurexin-1, whereas PS1 C410Y and PS1 ΔE9 fail to rescue the processing defect. These results suggest that PS regulate the synaptic function and processing of neurexins at glutamatergic synapses, and that impaired neurexin processing by PS may play a role in FAD.  相似文献   

11.
Retrograde signaling from postsynaptic cells to presynaptic neurons is essential for regulation of synaptic development, maintenance, and plasticity. Here we report that the novel protein AEX-1 controls retrograde signaling at neuromuscular junctions in C. elegans. aex-1 mutants show neural defects including reduced presynaptic activity and abnormal localization of the synaptic vesicle fusion protein UNC-13. Muscle-specific AEX-1 expression rescues these defects but neuron-specific expression does not. AEX-1 has an UNC-13 homologous domain and appears to regulate exocytosis in muscles. This retrograde signaling requires prohormone-convertase function in muscles, suggesting that a peptide is the retrograde signal. This signal regulates synaptic vesicle release via the EGL-30 Gq(alpha) protein at presynaptic terminals.  相似文献   

12.
Mutations in presenilins are the major cause of familial Alzheimer's disease, but the pathogenic mechanism by which presenilin mutations cause memory loss and neurodegeneration remains unclear. Here we demonstrate that conditional double knockout mice lacking both presenilins in the postnatal forebrain exhibit impairments in hippocampal memory and synaptic plasticity. These deficits are associated with specific reductions in NMDA receptor-mediated responses and synaptic levels of NMDA receptors and alphaCaMKII. Furthermore, loss of presenilins causes reduced expression of CBP and CREB/CBP target genes, such as c-fos and BDNF. With increasing age, mutant mice develop striking neurodegeneration of the cerebral cortex and worsening impairments of memory and synaptic function. Neurodegeneration is accompanied by increased levels of the Cdk5 activator p25 and hyperphosphorylated tau. These results define essential roles and molecular targets of presenilins in synaptic plasticity, learning and memory, and neuronal survival in the adult cerebral cortex.  相似文献   

13.
Preliminary evidence indicates that dopamine given by mouth facilitates the learning of motor skills and improves the recovery of movement after stroke. The mechanism of these phenomena is unknown. Here, we describe a mechanism by demonstrating in rat that dopaminergic terminals and receptors in primary motor cortex (M1) enable motor skill learning and enhance M1 synaptic plasticity. Elimination of dopaminergic terminals in M1 specifically impaired motor skill acquisition, which was restored upon DA substitution. Execution of a previously acquired skill was unaffected. Reversible blockade of M1 D1 and D2 receptors temporarily impaired skill acquisition but not execution, and reduced long-term potentiation (LTP) within M1, a form of synaptic plasticity critically involved in skill learning. These findings identify a behavioral and functional role of dopaminergic signaling in M1. DA in M1 optimizes the learning of a novel motor skill.  相似文献   

14.
Metabolic dysfunction and protein aggregation are common characteristics that occur in age‐related neurodegenerative disease. However, the mechanisms underlying these abnormalities remain poorly understood. We have found that mutations in the gene encoding presenilin in Caenorhabditis elegans, sel12, results in elevated mitochondrial activity that drives oxidative stress and neuronal dysfunction. Mutations in the human presenilin genes are the primary cause of familial Alzheimer''s disease. Here, we demonstrate that loss of SEL‐12/presenilin results in the hyperactivation of the mTORC1 pathway. This hyperactivation is caused by elevated mitochondrial calcium influx and, likely, the associated increase in mitochondrial activity. Reducing mTORC1 activity improves proteostasis defects and neurodegenerative phenotypes associated with loss of SEL‐12 function. Consistent with high mTORC1 activity, we find that SEL‐12 loss reduces autophagosome formation, and this reduction is prevented by limiting mitochondrial calcium uptake. Moreover, the improvements of proteostasis and neuronal defects in sel12 mutants due to mTORC1 inhibition require the induction of autophagy. These results indicate that mTORC1 hyperactivation exacerbates the defects in proteostasis and neuronal function in sel12 mutants and demonstrate a critical role of presenilin in promoting neuronal health.  相似文献   

15.
Fragile X mental retardation gene (FMR1) encodes an RNA binding protein that acts as a negative translational regulator. We have developed a Drosophila fragile X syndrome model using loss-of-function mutants and overexpression of the FMR1 homolog (dfxr). dfxr nulls display enlarged synaptic terminals, whereas neuronal overexpression results in fewer and larger synaptic boutons. Synaptic structural defects are accompanied by altered neurotransmission, with synapse type-specific regulation in central and peripheral synapses. These phenotypes mimic those observed in mutants of microtubule-associated Futsch. Immunoprecipitation of dFXR shows association with futsch mRNA, and Western analyses demonstrate that dFXR inversely regulates Futsch expression. dfxr futsch double mutants restore normal synaptic structure and function. We propose that dFXR acts as a translational repressor of Futsch to regulate microtubule-dependent synaptic growth and function.  相似文献   

16.
Mutant human presenilins cause early-onset familial Alzheimer's disease and render cells susceptible to apoptosis in cultured cell models. We show that loss of presenilin function in Drosophila melanogaster increases levels of apoptosis in developing tissues. Moreover, overexpression of presenilin causes apoptotic and neurogenic phenotypes resembling those of Presenilin loss-of-function mutants, suggesting that presenilin exerts a dominant negative effect when expressed at high levels. In Drosophila S2 cells, Psn overexpression leads to reduced Notch receptor synthesis affecting levels of the intact approximately 300-kD precursor and its approximately 120-kD processed COOH-terminal derivatives. Presenilin-induced apoptosis is cell autonomous and can be blocked by constitutive Notch activation, suggesting that the increased cell death is due to a developmental mechanism that eliminates improperly specified cell types. We describe a genetic model in which the apoptotic activities of wild-type and mutant presenilins can be assessed, and we find that Alzheimer's disease-linked mutant presenilins are less effective at inducing apoptosis than wild-type presenilin.  相似文献   

17.
Impairment of cognitive functions including hippocampus-dependent spatial learning and memory affects nearly half of the aged population. Age-related cognitive decline is associated with synaptic dysfunction that occurs in the absence of neuronal cell loss, suggesting that impaired neuronal signaling and plasticity may underlie age-related deficits of cognitive function. Expression of myelin-associated inhibitors (MAIs) of synaptic plasticity, including the ligands myelin-associated glycoprotein, neurite outgrowth inhibitor A, and oligodendrocyte myelin glycoprotein, and their common receptor, Nogo-66 receptor, was examined in hippocampal synaptosomes and Cornu ammonis area (CA)1, CA3 and dentate gyrus subregions derived from adult (12-13 months) and aged (26-28 months) Fischer 344 × Brown Norway rats. Rats were behaviorally phenotyped by Morris water maze testing and classified as aged cognitively intact (n = 7-8) or aged cognitively impaired (n = 7-10) relative to adults (n = 5-7). MAI protein expression was induced in cognitively impaired, but not cognitively intact, aged rats and correlated with cognitive performance in individual rats. Immunohistochemical experiments demonstrated that up-regulation of MAIs occurs, in part, in hippocampal neuronal axons and somata. While a number of pathways and processes are altered with brain aging, we report a coordinated induction of myelin-associated inhibitors of functional and structural plasticity only in cognitively impaired aged rats. Induction of MAIs may decrease stimulus-induced synaptic strengthening and structural remodeling, ultimately impairing synaptic mechanisms of spatial learning and memory and resulting in cognitive decline.  相似文献   

18.
19.
Fragile X syndrome (FraX), caused by the loss-of-function of one gene (FMR1), is the most common inherited form of both mental retardation and autism spectrum disorders. The FMR1 product (FMRP) is an mRNA-binding translation regulator that mediates activity-dependent control of synaptic structure and function. To develop any FraX intervention strategy, it is essential to define when and where FMRP loss causes the manifestation of synaptic defects, and whether the reintroduction of FMRP can restore normal synapse properties. In the Drosophila FraX model, dFMRP loss causes neuromuscular junction (NMJ) synapse over-elaboration (overgrowth, overbranching, excess synaptic boutons), accumulation of development-arrested satellite boutons, and altered neurotransmission. We used the Gene-Switch method to conditionally drive dFMRP expression to define the spatiotemporal requirements in synaptic mechanisms. Constitutive induction of targeted neuronal dFMRP at wild-type levels rescues all synaptic architectural defects in Drosophila Fmr1 (dfmr1)-null mutants, demonstrating a presynaptic requirement for synapse structuring. By contrast, presynaptic dFMRP expression does not ameliorate functional neurotransmission defects, indicating a postsynaptic dFMRP requirement. Strikingly, targeted early induction of dFMRP effects nearly complete rescue of synaptic structure defects, showing a primarily early-development role. In addition, acute dFMRP expression at maturity partially alleviates dfmr1-null defects, although rescue is not as complete as either early or constitutive dFMRP expression, showing a modest capacity for late-stage structural plasticity. We conclude that dFMRP predominantly acts early in synaptogenesis to modulate architecture, but that late dFMRP introduction at maturity can weakly compensate for early absence of dFMRP function.  相似文献   

20.
Mitochondria are the primary source of ATP needed for the steps of the synaptic vesicle cycle. Dynamin-related protein (DRP) is involved in the fission of mitochondria and peroxisomes. To assess the role of mitochondria in synaptic function, we characterized a Drosophila DRP mutant combination that shows an acute temperature-sensitive paralysis. Sequencing of the mutant reveals a single amino acid change in the guanosine triphosphate hydrolysing domain (GTPase domain) of DRP. The synaptic mitochondria in these mutants are remarkably elongated, suggesting a role for DRP in mitochondrial fission in Drosophila. There is a loss of neuronal transmission at restrictive temperatures in electroretinogram (ERG) recordings. Like stress-sensitive B (sesB), a mitochondrial adenosine triphosphate (ATP) translocase mutant we studied earlier for its effects on synaptic vesicle recycling, an allele-specific reduction in the temperature of paralysis of Drosophila synaptic vesicle recycling mutant shibire was seen in the DRP mutant background. These data, in addition to depletion of vesicles observed in electron microscopic sections of photoreceptor synapses at restrictive temperatures, suggest a block in synaptic vesicle recycling due to reduced mitochondrial function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号