首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Sporopachydermia cereana , an ascosporogenous yeast, grew on dimethylamine, trimethylamine or trimethylamine N -oxide as sole nitrogen sources and produced mono-oxygenases for dimethylamine and trimethylamine that were significantly more stable than the corresponding enzymes found in Candida utilis . No trimethylamine mono-oxygenase activity was found in S. cereana grown on dimethylamine. In cells grown on trimethylamine N -oxide (but not on the other nitrogen sources), evidence for an enzyme metabolizing the N -oxide, possibly an aldolase, but more probably a reductase was obtained. All these activities showed a similar requirement for the presence of FAD or FMN in the extract buffer during isolation to retain activity. Amine mono-oxygenase activities showed a similar sensitivity to inhibitors, including proadifen hydrochloride and carbon monoxide as the corresponding enzymes in C. utilis . The trimethylamine N -oxide-dependent oxidation of NADH was more sensitive to inhibition by EDTA, N -ethylmaleimide and β-phenylethylamine than the mono-oxygenases, and less sensitive to KCN, and activity was significantly higher with NADPH than was observed with the 2 mono-oxygenases.  相似文献   

2.
Abstract Most representatives of the halophilic arachaeobacterial genera Halobacterium, Haloarcula and Haloferax tested were able to reduce dimethylsulfoxide (DMSO) to dimethylsulfide (DMS) and trimethylamine N -oxide (TMAO) to trimethylamine (TMA) under (semi)anaerobic conditions. In most cases the reduction of DMSO and TMAO was accompanied by an increase in cell yield. The ability to reduce DMSO or TMAO was not correlated to reduced DMSO or TMAO was not correlated with the ability to reduce nitrate to nitrite. Anaerobic respiration with DMSO and TMAO as electron acceptor supplies the halophilic archeobacteria with an additional mode of energy generation in the absence of molecular oxygen.  相似文献   

3.
Deletion mutants of Escherichia coli lacking dimethyl sulfoxide (DMSO) reductase activity and consequently unable to utilize DMSO as an electron acceptor for anaerobic growth have been isolated. These mutants retained the ability to use trimethylamine N-oxide (TMAO) as an electron acceptor and the TMAO reductase activity was found to be unaltered. Heating the cell-free extract of the wild-type strain at 70 degrees C for 15 min selectively inactivated the DMSO reductase activity while the TMAO reductase activity remained unchanged for at least 1 h.  相似文献   

4.
Proton translocation coupled to trimethylamine N-oxide reduction was studied in Escherichia coli grown anaerobically in the presence of trimethylamine N-oxide. Rapid acidification of the medium was observed when trimethylamine N-oxide was added to anaerobic cell suspensions of E. coli K-10. Acidification was sensitive to the proton conductor 3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile (SF6847). No pH change was shown in a strain deficient in trimethylamine N-oxide reductase activity. The apparent H+/trimethylamine N-oxide ratio in cells oxidizing endogenous substrates was 3 to 4 g-ions of H+ translocated per mol of trimethylamine N-oxide added. The addition of trimethylamine N-oxide and formate to ethylenediaminetetraacetic acid-treated cell suspension caused fluorescence quenching of 3,3'-dipropylthiacarbocyanine [diS-C3-(5)], indicating the generation of membrane potential. These results indicate that the reduction of trimethylamine N-oxide in E. coli is catalyzed by an anaerobic electron transfer system, resulting in formation of a proton motive force. Trimethylamine N-oxide reductase activity and proton extrusion were also examined in chlorate-resistant mutants. Reduction of trimethylamine N-oxide occurred in chlC, chlG, and chlE mutants, whereas chlA, chlB, and chlD mutants, which are deficient in the molybdenum cofactor, could not reduce it. Protons were extruded in chlC and chlG mutants, but not in chlA, chlB, and chlD mutants. Trimethylamine N-oxide reductase activity in a chlD mutant was restored to the wild-type level by the addition of 100 microM molybdate to the growth medium, indicating that the same molybdenum cofactor as used by nitrate reductase is required for the trimethylamine N-oxide reductase system.  相似文献   

5.
6.
Bennion BJ  DeMarco ML  Daggett V 《Biochemistry》2004,43(41):12955-12963
Transmissible spongiform encephalopathies are a class of fatal neurodegenerative diseases linked to the prion protein. The prion protein normally exists in a soluble, globular state (PrP(C)) that appears to participate in copper metabolism in the central nervous system and/or signal transduction. Infection or disease occurs when an alternatively folded form of the prion protein (PrP(Sc)) converts soluble and predominantly alpha-helical PrP(C) into aggregates rich in beta-structure. The structurally disordered N-terminus adopts beta-structure upon conversion to PrP(Sc) at low pH. Chemical chaperones, such as trimethylamine N-oxide (TMAO), can prevent formation of PrP(Sc) in scrapie-infected mouse neuroblastoma cells [Tatzelt, J., et al. (1996) EMBO J. 15, 6363-6373]. To explore the mechanism of TMAO protection of PrP(C) at the atomic level, molecular dynamics simulations were performed under conditions normally leading to conversion (low pH) with and without 1 M TMAO. In PrP(C) simulations at low pH, the helix content drops and the N-terminus is brought into the small native beta-sheet, yielding a PrP(Sc)-like state. Addition of 1 M TMAO leads to a decreased radius of gyration, a greater number of protein-protein hydrogen bonds, and a greater number of tertiary contacts due to the N-terminus forming an Omega-loop and packing against the structured core of the protein, not due to an increase in the level of extended structure as with the PrP(C) to PrP(Sc) simulation. In simulations beginning with the "PrP(Sc)-like" structure (derived from PrP(C) simulated at low pH in pure water) in 1 M TMAO, similar structural reorganization at the N-terminus occurred, disrupting the extended sheet. The mechanism of protection by TMAO appears to be exclusionary in nature, consistent with previous theoretical and experimental studies. The TMAO-induced N-terminal conformational change prevents residues that are important in the conversion of PrP(C) to PrP(Sc) from assuming extended sheet structure at low pH.  相似文献   

7.
8.
We report a method based upon fast atom bombardment mass spectrometry (FAB-MS) and stable isotope dilution techniques for the measurement of urinary trimethylamine (TMA) and trimethylamine N-oxide (TMAOx). TMA is extracted from urine that was spiked with (15)N-labeled TMA. The extracted TMA isotopomers are quaternized with trideuteromethyl iodide and analyzed in FAB-MS with hexaethylene glycol as matrix. TMAOx is measured by evaporation of another sample of the urine spiked with (15)N-labeled TMAOx on the FAB probe and analyzed as for the TMA. The method allows the ready and simple distinguishing of controls and patients with TMAuria, and is useful in monitoring patients with the disorder. We give examples of its use in determining normal control ranges for these metabolites and in evaluating patients.  相似文献   

9.
Earlier studies have reported that trimethylamine N-oxide (TMAO), a naturally occurring osmolyte, is a universal stabilizer of proteins because it folds unstructured proteins and counteracts the deleterious effects of urea and salts on the structure and function of proteins. This conclusion has been reached from the studies of the effect of TMAO on proteins in the pH range 6.0-8.0. In this pH range TMAO is almost neutral (zwitterionic form), for it has a pK(a) of 4.66 +/- 0.10. We have asked the question of whether the effect of TMAO on protein stability is pH-dependent. To answer this question we have carried out thermal denaturation studies of lysozyme, ribonuclease-A, and apo-alpha-lactalbumin in the presence of various TMAO concentrations at different pH values above and below the pK(a) of TMAO. The main conclusion of this study is that near room temperature TMAO destabilizes proteins at pH values below its pK(a), whereas it stabilizes proteins at pH values above its pK(a). This conclusion was reached by determining the T(m) (midpoint of denaturation), delta H(m) (denaturational enthalpy change at T(m)), delta C(p) (constant pressure heat capacity change), and delta G(D) degrees (denaturational Gibbs energy change at 25 degrees C) of proteins in the presence of different TMAO concentrations. Other conclusions of this study are that T(m) and delta G(D) degrees depend on TMAO concentration at each pH value and that delta H(m) and the delta C(p) are not significantly changed in presence of TMAO.  相似文献   

10.
11.
Escherichia coli grown anaerobically with trimethylamine N-oxide (TMAO) as a terminal electron acceptor develops a new cytochrome pathway in addition to the aerobic respiratory pathways which are still formed. Formate, NADH, and possibly other substrates derived from glucose, supply electrons to this pathway. Cytochromes with alpha-absorption peaks at about 548, 552, 554 and 557 nm are rapidly reoxidized by TMAO in a reaction which is not inhibited by 2-n-heptyl -4-hydroxyquinone N-oxide. CuSO4 inhibits the reoxidation by TMAO of the first two of these cytochromes. This suggests that the pathway of electron transfer leading to the reduction of TMAO is: substrates leads to cytochromes 548,552 leads to cytochromes 554,557 leads to trimethylamine-N-oxide reductase leads to TMAO. These cytochromes, but not those of the aerobic respiratory pathways, are reoxidized by the membrane-impermeant oxidant ammonium persulfate in intact cells. This suggests that the cytochromes of the TMAO reduction pathway and/or trimethylamine-N-oxide reductase are situated at the periplasmic surface of the cytoplasmic membrane of E. coli.  相似文献   

12.
We have developed a method for measuring dimethylamine (DMA), trimethylamine (TMA), and trimethylamine N-oxide (TMAO) in biological samples using gas chromatography with mass spectrometric detection. DMA, TMA, and TMAO were extracted from biological samples into acid after internal standards (labeled with stable isotopes) were added. p-Toluenesulfonyl chloride was used to form the tosylamide derivative of DMA. 2,2,2-Trichloroethyl chloroformate was used to form the carbamate derivative of TMA. TMAO was reduced with titanium(III) chloride to form TMA, which was then analyzed. The derivatives were chromatographed using capillary gas chromatography and were detected and quantitated using electron ionization mass spectrometry (GC/MS). Derivative yield, reproducibility, linearity, and sensitivity of the assay are described. The amounts of DMA, TMA, and TMAO in blood, urine, liver, and kidney from rats and humans, as well as in muscle from fishes, were determined. We also report the use of this method in a pilot study characterizing dimethylamine appearance and disappearance from blood in five human subjects after ingesting [13C]dimethylamine (0.5 mumol/kg body wt). The method we describe was much more reproducible than existing gas chromatographic methods and it had equivalent sensitivity (detected 1 pmol). The derivatized amines were much more stable and less likely to be lost as gases when samples were stored. Because we used GC/MS, it was possible to use stable isotopic labels in studies of methylamine metabolism in humans.  相似文献   

13.
Added KCl increases the apparent Michaelis constant (Km) of pyruvate for porcine muscle-type lactate dehydrogenase (100 mM KCl, 83%; 200 mM KCl, 188%). The effects of 100 mM KCl were fully reversed by 375 mM trimethylamine N-oxide (TMAO). TMAO (375-750 mM) partially reversed the effects of 200 mM KCl. TMAO as the sole solute, at concentrations up to 750 mM, had no effect on Km. This is atypical because compensatory osmolytes such as TMAO characteristically counteract protein perturbation in an additive manner.  相似文献   

14.
Strambini GB  Gonnelli M 《Biochemistry》2008,47(11):3322-3331
This study reports the first quantitative estimate of the thermodynamic stability (Delta G degrees ) of a protein in low-temperature partly frozen aqueous solutions in the presence of the protective osmolytes trimethylamine N-oxide (TMAO), glycine betaine, and sarcosine. The method, based on guanidinium chloride denaturation of the azurin mutant C112S from Pseudomonas aeruginosa, distinguishes between the deleterious effects of subfreezing temperatures from those due specifically to the formation of a solid ice phase. The results point out that in the liquid state molar concentrations of these osmolytes stabilize significantly the native fold and that their effect is maintained on cooling to -15 degrees C. At this temperature, freezing of the solution in the absence of any additive causes a progressive destabilization of the protein, Delta G degrees decreasing up to 3-4 kcal/mol as the fraction of liquid water in equilibrium with ice ( V L) is reduced to less than 1%. The ability of the three osmolytes to prevent the decrease in protein stability at small V L varies significantly among them, ranging from the complete inertness of sarcosine to full protection by TMAO. The singular effectiveness of TMAO among the osmolytes tested until now is maintained high even at concentrations as low as 0.1 M when the additive stabilization of the protein in the liquid state is negligible. In all cases the reduction in Delta G degrees caused by the solidification of water correlates with the decrease in m-value entailing that protein-ice interactions generally conduct to partial unfolding of the native state. It is proposed that the remarkable effectiveness of TMAO to counter the ice perturbation is owed to binding of the osmolyte to ice, thereby inhibiting protein adsorption to the solid phase.  相似文献   

15.
Anaerobic growth of E. coli, strain K-10, depending on formate oxidation by nitrate, fumarate, and trimethylamine N-oxide was followed in a medium containing peptone. The presence of formate and peptone was indispensable for growth with fumarate and trimethylamine N-oxide reduction. While there was no growth in the absence of acceptor, growth was observed in the absence of formate by nitrate reduction though not as much as under aerobic conditions. Per mole consumed formate equimolar succinate or trimethylamine was formed, but 1.2 mole of nitrate was produced, probably depending partly on peptone oxidation. The molar growth yield on formate was found to be 6.5, 7.6, and 7.0 g cells/mole depending on the reduction of nitrate, fumarate, and trimethylamine N-oxide, respectively, suggesting the formation of one mole ATP coupled to the anaerobic electron transfers from formate.  相似文献   

16.
Trimethylamine-N-oxide (TMAO) has been reported as a risk factor for atherosclerosis development, as well as for other cardiovascular disease (CVD) pathologies. The objective of this review is to provide a useful summary on the use of phytochemicals as TMAO-reducing agents. This review discusses the main mechanisms by which TMAO promotes CVD, including the modulation of lipid and bile acid metabolism, and the promotion of endothelial dysfunction and oxidative stress. Current knowledge on the available strategies to reduce TMAO formation are discussed, highlighting the effect and potential of phytochemicals. Overall, phytochemicals (i.e., phenolic compounds or glucosinolates) reduce TMAO formation by modulating gut microbiota composition and/or function, inhibiting host's capacity to metabolize TMA to TMAO, or a combination of both. Perspectives for design of future studies involving phytochemicals as TMAO-reducing agents are discussed. Overall, the information provided by this review outlines the current state of the art of the role of phytochemicals as TMAO reducing agents, providing valuable insight to further advance in this field of study.  相似文献   

17.
18.
19.
Development of the ascospores of Sporopachydermia lactativora and S. cereana was studied in ultrathin sections. The spores have a very thick wall consisting of a thin dark outer layer and a double light inner layer the outer part of which is very wide and often irregular. During germination, this part disappears, the outer dark layer breaks up and the inner part of the light layer remains around the protoplast during development to a vegetative cell.This investigation was supported by the Netherlands Organization for the Advancement of Pure Research (Z.W.O.).  相似文献   

20.
E. coli was found to grow anaerobically on lactate in the presence of trimethylamine N-oxide (TMANO), reducing it to trimethylamine. Anaerobic growth on glucose was promoted in the presence of TMANO. When a culture grown in complex medium was transferred to defined medium, growth on glucose and ammonia took place in the presence of TMANO after consumption of complex nutrients introduced with the preculture, in contrast to growth in nitrate respiration. The amounts of ethanol, succinate, and lactate among the fermentation products were decreased and that of acetate was increased in the presence of TMANO. Formate generation was much reduced at pH 7.4, whereas stoichiometric formation of formate was observed in the absence of TMANO. Cells grown anaerobically in the presence of TMANO had a higher activity of amine N-oxide reductase than cells grown under other conditions. The content of cytochrome-558 was elevated in the presence of TMANO during growth in complex medium. Cytochrome c-552 found in cells grown in diluted complex medium or defined medium in the presence of TMANO was oxidized by TMANO in cell extracts. The molar growth yield on glucose was higher in the presence of TMANO than in its absence and lower than that in the presence of nitrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号