首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genome of Pyrococcus abyssi contains two open reading frames encoding proteins which had been previously predicted to be DNA ligases, Pab2002 and Pab1020. We show that while the former is indeed a DNA ligase, Pab1020 had no effect on the substrate deoxyoligo-ribonucleotides tested. Instead, Pab1020 catalyzes the nucleotidylation of oligo-ribonucleotides in an ATP-dependent reaction, suggesting that it is an RNA ligase. We have solved the structure of Pab1020 in complex with the ATP analog AMPPNP by single-wavelength anomalous dispersion (SAD), elucidating a structure with high structural similarity to the catalytic domains of two RNA ligases from the bacteriophage T4. Additional carboxy-terminal domains are also present, and one of these mediates contacts with a second protomer, which is related by noncrystallographic symmetry, generating a homodimeric structure. These C-terminal domains are terminated by short domain swaps which themselves end within 5 Å of the active sites of the partner molecules. Additionally, we show that the protein is indeed capable of circularizing RNA molecules in an ATP-dependent reaction. These structural and biochemical results provide an insight into the potential physiological roles of Pab1020.  相似文献   

2.
The Bacillus subtilis addAB genes are fully functional in Escherichia coli   总被引:4,自引:0,他引:4  
An Escherichia coli recBCD deletion mutant was transformed with plasmids containing the Bacillus subtilis add genes. The transformants had relatively high ATP-dependent exonuclease- and ATP-dependent helicase activities, and their viability, the ability to repair u.v.-damaged DNA and the recombination in conjugation were nearly completely restored. The B. subtilis Add enzyme did not show Chi-activity in phage lambda recombination. The individual B. subtilis Add proteins were not able to form an enzymatically active complex with the E. coli RecB,C,D proteins, and they could not complement the recB,C,D deficiency. Evidence is presented that only two subunits are involved in the B. subtilis ATP-dependent exonuclease. This is in contrast to E. coli in which the RecBCD enzyme consists of three subunits.  相似文献   

3.
4.
Ovomucoids consist of a single polypeptide chain which is composed of three tandem Kazal domains. Each Kazal domain is an actual or putative protein inhibitor of serine proteinases. Ovomucoid third domains were already isolated and sequenced from 126 species of birds (Laskowskiet al., 1987, 1990). This paper adds 27 new species. A number of generalizations are made on the basis of sequences from 153 species. The residues that are in contact with the enzyme in enzyme-inhibitor complexes are strikingly hypervariable. While the primary specificity residue,P 1, is the most variable; substitutions occur predominantly among aliphatic, hydrophobic residues. Consensus sequences for an avian ovomucoid third domain, for a b-type Kazal domain (i.e., a COOH terminal domain of multidomain inhibitors) and for a general Kazal domain are given. Finally, the individual new sequences are briefly discussed.  相似文献   

5.
Helicases are motor proteins of biological system, which catalyze the opening of energetically stable duplex nucleic acids in an ATP-dependent manner and thereby are involved in almost all aspects of nucleic acid metabolism including cell cycle progression. They contain several conserved domains including the DEAD-box and also several unique domains associated with these. The Pfam database (http://pfam.janelia.org/) is a large collection of protein families, each represented by multiple sequence alignments and hidden Markov models (HMMs). A diverse range of proteins are found in nature, and the functional specificity to each protein, to a greater extent, is imparted by its domain architecture. To this extent, a DEAD-box ATP-dependent RNA helicase (LOC_Os01g36890; Genomic sequence length: 6284 nucleotides; CDS length: 1299 nucleotides; Protein length: 432 amino acids) was studied. The protein sequence was imported for domain search on Pfam. This particular Pfam entry after covering a large proportion of the sequences in the underlying database has generated a more comprehensive coverage across a wide range of phyla of the known domains that are associated with the typical DEAD-box helicase motif. A total of 362 domain architectures were recollected from the Pfam database for the Family: DEAD (PF00270). We have therefore systematically analyzed the domains closely associated with DEAD-motif, which occur in a variety of proteins and can provide insights into their function.  相似文献   

6.
Many eubacteria contain an ATP-dependent protease complex, which is built by multiple copies of the HslV and HslU proteins and is therefore called HslVU. HslU proteins are AAA + ATPases, while HslV proteins are proteases that show highly significant similarity to β subunits of proteasomes. Therefore, the HslVU complex has been envisaged as a precursor or ancestral type of proteasome. Here we show that species of most of the main eukaryotic lineages have HslU and HslV genes very similar to those found in proteobacteria. We have detected them in amoebozoa, plantae, chromoalveolata, rhizaria, and excavata species. Phylogenetic analyses suggest that these genes have been obtained by endosymbiosis from the proteobacterial ancestor that gave rise to eukaryotic mitochondria. The products encoded by these eukaryotic genes adopt, according to modeling based on the known crystal structures of prokaryotic HslU and HslV proteins, conformations that are compatible with their being fully active, suggesting that functional HslVU complexes may be present in many eukaryotic species. [Reviewing Editor: Dr. Yves Van de Peer]  相似文献   

7.
ATP-binding cassette (ABC) transporters are ubiquitous integral membrane proteins, which catalyze the translocation of molecules across biological membranes in an ATP-dependent manner. Despite the diversity in the transported substrates, they all share the same architecture, comprised of two transmembrane (TMD) and two nucleotide-binding domains (NBD). Members of the bacteriocin ABC transporter subfamily feature a special domain, belonging to the C39 (cystein protease family 39) peptidase protein family. These domains are assumed to cleave a C-terminal signal sequence from the protein or peptide substrate before or during the transport process. Although the C39 peptidase-like domain of the ABC transporter haemolysin B from E. coli shows no proteolytic activity, it is essential for the function of this transporter. In order to elucidate the contribution of the isolated C39 peptidase-like domain in the whole transport process, the backbone and side chain 1H, 15N and 13C-NMR chemical shifts have been assigned.  相似文献   

8.
Serine proteinases are involved, besides digestive role, in immune response processes. In addition to the typical serine proteinase domain, proteinases from arthropod haemocytes contain so-called clip domains which are believed to exert regulatory functions. Clones coding for clip domain-containing serine proteinases were isolated from both Penaeus vannamei and Penaeus monodon haemocyte cDNA libraries. These proteins have most of the structural characteristics of serine proteinase domain, but in the clip domain there are only four cysteines, whereas in most other clip domains there are six. Such structures are named pseudo-clip domains and apparently seem to be widely distributed in Penaeid shrimp. These proteinases were only expressed in haemocytes and not in muscles, hypodermis, heart, tail stalk, pleopods or hepatopancreas.  相似文献   

9.
The activity of proteinases in soy masy juice was measured by a modification of the Anson’s method. Compared to proteinases of purely cultured soy koji digest which consisted of only Aspergillus proteinases, no difference was observed with the proteinases of usual soy mash through the studies of pH-proteinese activity curves, the inhibition test, and inactivation by acid and alkali treatment. It is supposed, therefore, that the proteinases in soy mash are mostly of Aspergillus origin. Viable counts on salted media, heat shocking at 80°C for thirty minutes, and the microscopic counts proved that there are very few Bacilli vegetative cells in soy mash. From these facts the author assumed that Bacilli mainly grow in the koji and survive in the soy mash mostly in the form of spores. This work also suggested that the so-called “Aspergillus alkaline proteinase” consists of two distinct proteinases, and further the existence of an inhibitor which only acts at pH8.  相似文献   

10.
Uptake of iron complexes into the Gram-negative bacterial cell requires highly specific outer membrane receptors and specific ATP-dependent (ATP-Binding-Cassette (ABC)) transport systems located in the inner membrane. The latter type of import system is characterized by a periplasmic binding protein (BP), integral membrane proteins, and membrane-associated ATP-hydrolyzing proteins. In Gram-positive bacteria lacking the periplasmic space, the binding proteins are lipoproteins tethered to the cytoplasmic membrane. To date, there is little structural information about the components of ABC transport systems involved in iron complex transport. The recently determined structure of the Escherichia coli periplasmic ferric siderophore binding protein FhuD is unique for an ABC transport system (Clarke et al. 2000). Unlike other BP's, FhuD has two domains connected by a long -helix. The ligand binds in a shallow pocket between the two domains. In vivo and in vitro analysis of single amino acid mutants of FhuD identified several residues that are important for proper functioning of the protein. In this study, the mutated residues were mapped to the protein structure to define special areas and specific amino acid residues in E. coli FhuD that are vital for correct protein function. A number of these important residues were localized in conserved regions according to a multiple sequence alignment of E. coli FhuD with other BP's that transport siderophores, heme, and vitamin B12. The alignment and structure prediction of these polypeptides indicate that they form a distinct family of periplasmic binding proteins.  相似文献   

11.
The 45,55,65 and 100kDa ATP-binding proteinases(ATP-BPases) of the heat-shocked (44℃ for 30 min,recovery for 12h) rat C6 glioma cells were purified by DEAE-ionexchange and ATP-affinity chromatography.Their molecular masses,isoelectric points (pI),pH-optima and other properties were analyzed by native proteinase gels.It was shown that the 65 kDa ATP-BPase is specifically induced by heat shock and not detectable in control cells.Its N-terminal 1-9amino acid sequence was determined by Edman degradation,but no homologies to other proteins in the protein data bases were found.30 and 31kDa proteinases can be cleaved from the 45,55 and 65 kDa proteinases to which they are linked.A possible relationship of the heat-induced 65 kDa ATP-BPase with the ATP-dependent proteinases (ATP-DPases) in prokaryotes and eukaryotes is discussed.  相似文献   

12.
In Escherichia coli, Lon is an ATP-dependent protease which degrades misfolded proteins and certain rapidly-degraded regulatory proteins. Given that oxidatively damaged proteins are generally degraded rather than repaired, we anticipated that Lon deficient cells would exhibit decreased viability during aerobic, but not anaerobic, carbon starvation. We found that the opposite actually occurs. Wild-type and Lon deficient cells survived equally well under aerobic conditions, but Lon deficient cells died more rapidly than the wild-type under anaerobiosis. Aerobic induction of the Clp family of ATP-dependent proteases could explain these results, but direct quantitation of Clp protein established that its level was not affected by Lon deficiency and overexpression of Clp did not rescue the cells under anaerobic conditions. We conclude that the Lon protease supports survival during anaerobic carbon starvation by a mechanism which does not depend on Clp. Shen Luo and Megan McNeill contributed equally to this research.  相似文献   

13.
Abstract In Neurospora crassa , heat shock treatment inhibits proteolytic activity. ATP-independent proteinases were analysed after polyacrylamide gel electrophoresis using renaturing gelatine gels. Proteinases of 24, 29, and 130 kDa were shown to be inhibited by heat shock and were further characterized as to their properties. A major part of the heat shock-induced inhibition is probably due to suppression of de novo synthesis of proteinases as deduced from experiments with cycloheximide. During several hours of recovery from heat shock, the inhibition of overall protein degradation and ATP-independent proteinases is reversed. Azocasein assays as well as pulse-chase experiments further showed that ATP-dependent protein degradation is only slightly affected by heat shock. Two ATP-binding proteinases of about 60 and 160 kDa even show an increased activity after heat shock. The degradation rate of heat shock proteins is inhibited by heat shock treatment, indicating that they are degraded by ATP-independent proteinases. Western blot analysis of a ∼40-kDa degradation product of HSP70 containing its amino terminal portion revealed a reduction in the amount of this peptide after heat shock.  相似文献   

14.
Proteolytic proteins solubilized from the membrane of Bacillus intermedius were studied by electrophoresis. The content of membrane-bound proteinases was lower in cells grown in the presence of glucose. Proteinase enzymograms revealed four molecular forms of subtilisin and four molecular forms of glutamyl endopeptidase. The electrophoretic mobility of one of the molecular forms was similar to those of the mature extracellular proteinases. Chromatography of membrane proteins on a MonoS column yielded four protein fractions that caused hydrolysis of Z-Glu-pNA and four fractions that caused hydrolysis of Z-Ala-Ala-Leu-pNA, which is in agreement with the results of electrophoresis. The molecular forms of proteinases identified in the membrane may reflect various stages of biogenesis of the corresponding extracellular enzymes.  相似文献   

15.
BAM is a conserved molecular machine, the central component of which is BamA. Orthologues of BamA are found in all Gram‐negative bacteria, chloroplasts and mitochondria where it is required for the folding and insertion of β‐barrel containing integral outer membrane proteins (OMPs) into the outer membrane. BamA binds unfolded β‐barrel precursors via the five polypeptide transport‐associated (POTRA) domains at its N‐terminus. The C‐terminus of BamA folds into a β‐barrel domain, which tethers BamA to the outer membrane and is involved in OMP insertion. BamA orthologues are found in all Gram‐negative bacteria and appear to function in a species‐specific manner. Here we investigate the nature of this species‐specificity by examining whether chimeric Escherichia coli BamA fusion proteins, carrying either the β‐barrel or POTRA domains from various BamA orthologues, can functionally replace E. coli BamA. We demonstrate that the β‐barrel domains of many BamA orthologues are functionally interchangeable. We show that defects in the orthologous POTRA domains can be rescued by compensatory mutations within the β‐barrel. These data reveal that the POTRA and barrel domains must be precisely aligned to ensure efficient OMP insertion.  相似文献   

16.
Several vacuolar sorting determinants (VSDs) have been described for protein trafficking to the vacuoles in plant cells. Because of the variety in plant models, cell types and experimental approaches used to decipher vacuolar targeting processes, it is not clear whether the three well‐known groups of VSDs identified so far exhaust all the targeting mechanisms, nor if they reflect certain protein types or families. The vacuolar targeting mechanisms of the aspartic proteinases family, for instance, are not yet fully understood. In previous studies, cardosin A has proven to be a good reporter for studying the vacuolar sorting of aspartic proteinases. We therefore propose to explore the roles of two different cardosin A domains, common to several aspartic proteinases [i.e. the plant‐specific insert (PSI) and the C–terminal peptide VGFAEAA] in vacuolar sorting. Several truncated versions of the protein conjugated with fluorescent protein were made, with and without these putative sorting determinants. These domains were also tested independently, for their ability to sort other proteins, rather than cardosin A, to the vacuole. Fluorescent chimaeras were tracked in vivo, by confocal laser scanning microscopy, in Nicotiana tabacum cells. Results demonstrate that either the PSI or the C terminal was necessary and sufficient to direct fluorescent proteins to the vacuole, confirming that they are indeed vacuolar sorting determinants. Further analysis using blockage experiments of the secretory pathway revealed that these two VSDs mediate two different trafficking pathways.  相似文献   

17.
Recognition of short linear motifs (SLiMs) or peptides by proteins is an important component of many cellular processes. However, due to limited and degenerate binding motifs, prediction of cellular targets is challenging. In addition, many of these interactions are transient and of relatively low affinity. Here, we focus on one of the largest families of SLiM‐binding domains in the human proteome, the PDZ domain. These domains bind the extreme C‐terminus of target proteins, and are involved in many signaling and trafficking pathways. To predict endogenous targets of PDZ domains, we developed MotifAnalyzer‐PDZ, a program that filters and compares all motif‐satisfying sequences in any publicly available proteome. This approach enables us to determine possible PDZ binding targets in humans and other organisms. Using this program, we predicted and biochemically tested novel human PDZ targets by looking for strong sequence conservation in evolution. We also identified three C‐terminal sequences in choanoflagellates that bind a choanoflagellate PDZ domain, the Monsiga brevicollis SHANK1 PDZ domain (mbSHANK1), with endogenously‐relevant affinities, despite a lack of conservation with the targets of a homologous human PDZ domain, SHANK1. All three are predicted to be signaling proteins, with strong sequence homology to cytosolic and receptor tyrosine kinases. Finally, we analyzed and compared the positional amino acid enrichments in PDZ motif‐satisfying sequences from over a dozen organisms. Overall, MotifAnalyzer‐PDZ is a versatile program to investigate potential PDZ interactions. This proof‐of‐concept work is poised to enable similar types of analyses for other SLiM‐binding domains (e.g., MotifAnalyzer‐Kinase). MotifAnalyzer‐PDZ is available at http://motifAnalyzerPDZ.cs.wwu.edu .  相似文献   

18.
Malaria parasite-infected erythrocytes exhibit enhanced glucose utilisation and 6-phospho-1-fructokinase (PFK) is a key enzyme in glycolysis. Here we present the characterisation of PFK from the human malaria parasite Plasmodium falciparum. Of the two putative PFK genes on chromosome 9 (PfPFK9) and 11 (PfPFK11), only the PfPFK9 gene appeared to possess all the catalytic features appropriate for PFK activity. The deduced PfPFK proteins contain domains homologous to the plant-like pyrophosphate (PPi)-dependent PFK β and α subunits, which are quite different from the human erythrocyte PFK protein. The PfPFK9 gene β and α regions were cloned and expressed as His6- and GST-tagged proteins in Escherichia coli. Complementation of PFK-deficient E. coli and activity analysis of purified recombinant proteins confirmed that PfPFK9β possessed catalytic activity. Monoclonal antibodies against the recombinant β protein confirmed that the PfPFK9 protein has β and α domains fused into a 200 kDa protein, as opposed to the independent subunits found in plants. Despite an overall structural similarity to plant PPi-PFKs, the recombinant protein and the parasite extract exhibited only ATP-dependent enzyme activity, and none with PPi. Unlike host PFK, the Plasmodium PFK was insensitive to fructose-2,6-bisphosphate (F-2,6-bP), phosphoenolpyruvate (PEP) and citrate. A comparison of the deduced PFK proteins from several protozoan PFK genome databases implicates a unique class of ATP-dependent PFK present amongst the apicomplexan protozoans.  相似文献   

19.
The technique of model-building a protein of known sequence but unknown tertiary structure from the structures of homologous proteins is probably so far the most reliable means of mapping from primary to tertiary structure. A key step towards the realization of the aim is to develop ways of aligning three-dimensional structures of homologus proteins, thereby deriving the rules useful for protein modelling. We have developed a generalized differential-geometric representation of protein local conformation for use in a protein comparison program which aligns protein sequences on the basis of their sequence and conformational knowledge. Because the differetial-geometric distance measure between local conformations is independent of the coordinate frame and remains chirality information, the comparison program is easily implemented, relatively rational and reasonably fast. The utility of this program for aligning closely and distantly related homologous proteins is demonstrated by multiple alignment of globins, serine proteinases and aspartic proteinase domains. Particularly, the method has reached the rational alignment between the mammalian and microbial serine proteinases as compared with many published alignment programs.  相似文献   

20.
Par proteins establish discrete intracellular spatial domains to polarize many different cell types. In the single-cell embryo of the nematode worm Caenorhabditis elegans, the segregation of Par proteins is crucial for proper division and cell fate specification. Actomyosin-based cortical flows drive the initial formation of anterior and posterior Par domains, but cortical actin is not required for the maintenance of these domains. Here we develop a model of interactions between the Par proteins that includes both mutual inhibition and PAR-3 oligomerization. We show that this model gives rise to a bistable switch mechanism, allowing the Par proteins to occupy distinct anterior and posterior domains seen in the early C. elegans embryo, independent of dynamics or asymmetries in the actin cortex. The model predicts a sharp loss of cortical Par protein asymmetries during gradual depletion of the Par protein PAR-6, and we confirm this prediction experimentally. Together, these results suggest both mutual inhibition and PAR-3 oligomerization are sufficient to maintain distinct Par protein domains in the early C. elegans embryo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号