首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Active ion transport by ATP-or light-driven pumps involves a sequence of elementary steps such as binding and release of ions, as well as conformational transitions of the pump protein. At the microscopic level the individual reaction steps occur at random intervals, and therefore the current generated by electrogenic pumps fluctuates around a mean value. In this paper, a theoretical treatment of the electrical noise associated with active ion transport is given. The analysis, which is based on the calculation of the correlation function, yields the spectral intensity S 1 of current noise as a function of frequency, f. The shape of S I(f) contains information on the rate constants as well as on the magnitude of the charge displacements occuring during single reaction steps. The contribution of electrogenic pumps to the total voltage noise of the cell may be estimated from S I(f) and from the frequency-dependent impedance of the cell membrane.  相似文献   

3.
The clostripain core protein is composed of the light and heavy chain subunits linked by a nonapeptide into a single polypeptide chain [Mol. Gen. Genet. 240: 140, 1993]. Linker removal is due to autocatalytic processing yielding active heterodimeric enzyme. We have expressed mutationally altered core protein variants in the heterologous host Escherichia coli to gain further insight into the process of clostripain automaturation. In a mutationally created Cys231→ Ser variant, heterodimer formation was largely impaired, providing molecular evidence that the capacity for automaturation is attributed to the active site cysteine, Cys231, of the native enzyme. Artificially generated deletions of the linker peptide did not prevent the formation of active enzyme. One variant gave rise to a single-chain molecule devoid of the authentic processing sites while retaining enzymatic activity. Experiments performed with linker substitution variants suggested that the efficacy of automaturation depends on a proper configuration of the linker region. According to computerized predictions, the formation of a turn-structured protein loop or hinge with hydrophilic characteristics in the linker region is probably a prerequisite for the interaction of the active site cysteine with the processing sites, Arg181 and Arg190. We propose that the clostripain linker nonapeptide serves as an important transient intramolecular inhibitor in the cellular self-defense program evolved by the natural host Clostridium histolyticum. Received: 23 January 1996 / Accepted: 22 April 1996  相似文献   

4.
Abstract

The increasing number of multidrug-resistant pathogenic microorganisms is a serious public health issue. Among the multitude of mechanisms that lead to multidrug resistance, the active extrusion of toxic compounds, mediated by MDR efflux pumps, plays an important role. In our study we analyzed the inhibitory capability of 26 synthesized zosuquidar derivatives on three ABC-type MDR efflux pumps, namely Saccharomyces cerevisiae Pdr5 as well as Lactococcus lactis LmrA and LmrCD. For Pdr5, five compounds could be identified that inhibited rhodamine 6G transport more efficiently than zosuquidar. One of these is a compound with a new catechol acetal structure that might represent a new lead compound. Furthermore, the determination of IC50 values for rhodamine 6G transport of Pdr5 with representative compounds reveals values between 0.3 and 0.9 μM. Thus the identified compounds are among the most potent inhibitors known for Pdr5. For the ABC-type efflux pumps LmrA and LmrCD from L. lactis, seven and three compounds, which inhibit the transport activity more than the lead compound zosuquidar, were found. Interestingly, transport inhibition for LmrCD was very specific, with a drastic reduction by one compound while its diastereomers showed hardly an effect. Thus, the present study reveals new potent inhibitors for the ABC-type MDR efflux pumps studied with the inhibitors of Pdr5 and LmrCD being of particular interest as these proteins are well known model systems for their homologs in pathogenic fungi and Gram-positive bacteria.  相似文献   

5.
Mannan-binding lectin (MBL)-associated serine proteases, MASP-1 and MASP-2, have been thought to autoactivate when MBL/ficolin·MASP complexes bind to pathogens triggering the complement lectin pathway. Autoactivation of MASPs occurs in two steps: 1) zymogen autoactivation, when one proenzyme cleaves another proenzyme molecule of the same protease, and 2) autocatalytic activation, when the activated protease cleaves its own zymogen. Using recombinant catalytic fragments, we demonstrated that a stable proenzyme MASP-1 variant (R448Q) cleaved the inactive, catalytic site Ser-to-Ala variant (S646A). The autoactivation steps of MASP-1 were separately quantified using these mutants and the wild type enzyme. Analogous mutants were made for MASP-2, and rate constants of the autoactivation steps as well as the possible cross-activation steps between MASP-1 and MASP-2 were determined. Based on the rate constants, a kinetic model of lectin pathway activation was outlined. The zymogen autoactivation rate of MASP-1 is ∼3000-fold higher, and the autocatalytic activation of MASP-1 is about 140-fold faster than those of MASP-2. Moreover, both activated and proenzyme MASP-1 can effectively cleave proenzyme MASP-2. MASP-3, which does not autoactivate, is also cleaved by MASP-1 quite efficiently. The structure of the catalytic region of proenzyme MASP-1 R448Q was solved at 2.5 Å. Proenzyme MASP-1 R448Q readily cleaves synthetic substrates, and it is inhibited by a specific canonical inhibitor developed against active MASP-1, indicating that zymogen MASP-1 fluctuates between an inactive and an active-like conformation. The determined structure provides a feasible explanation for this phenomenon. In summary, autoactivation of MASP-1 is crucial for the activation of MBL/ficolin·MASP complexes, and in the proenzymic phase zymogen MASP-1 controls the process.  相似文献   

6.
Novick &; Weiner (1957) proposed a model in which induction of the lac operon with suboptimal concentrations of inducer generates a population containing both uninduced and fully induced cells. The latter arise as cells acquire the galactoside transport system, thus initiating an autocatalytic cycle of induction since this permease can transport an inducer for its own synthesis. Evidence in favor of this model has been obtained from direct measurements of the enzyme content of individual cells, using a fluorogenic assay sensitive to one molecule of β-d-galactosidase. Fully induced cells, at the predicted frequency, were found in suboptimally induced populations of wild type strains, and of a strain lacking thiogalactoside transacetylase, but not of a strain lacking galactoside permease. In the wild type, the frequency of cells with an enzyme content intermediate between uninduced and fully induced levels was greater than the frequency predicted for cells within the autocatalytic cycle of induction. According to the model, then, in some of these cells, induction of β-d-galactosidase has occurred without formation of the permease necessary to initiate accumulation of inducer.  相似文献   

7.
A model based on enzyme localization is developed which gives rise to an apparent active transport of a metabolite into or out of cells. The model is applied to three simple situations, using Fick's equation and the Rashevsky approximation. It is shown that the apparent efficiency can be made as large as desired if, for constant reaction, the outer cell region is made sufficiently small, or, for autocatalytic reaction, if the metabolite concentration in the outer region is sufficiently small. The physical limitations imposed by this mechanism are developed for all three situations.  相似文献   

8.
P-type ATPases are ubiquitously abundant primary ion pumps, which are capable of transporting cations across the cell membrane at the expense of ATP. Since these ions comprise a large variety of vital biochemical functions, nature has developed rather sophisticated transport machineries in all kingdoms of life. Due to the importance of these enzymes, representatives of both eu- and prokaryotic as well as archaeal P-type ATPases have been studied intensively, resulting in detailed structural and functional information on their mode of action. During catalysis, P-type ATPases cycle between the so-called E1 and E2 states, each of which comprising different structural properties together with different binding affinities for both ATP and the transport substrate. Crucial for catalysis is the reversible phosphorylation of a conserved aspartate, which is the main trigger for the conformational changes within the protein. In contrast to the well-studied and closely related eukaryotic P-type ATPases, much less is known about their homologues in Bacteria. Whereas in Eukarya there is predominantly only one subunit, which builds up the transport system, in Bacteria there are multiple polypeptides involved in the formation of the active enzyme. Such a rather unusal prokaryotic P-type ATPase is the KdpFABC complex of the enterobacterium Escherichia coli, which serves as a highly specific K+ transporter. A unique feature of this member of P-type ATPases is that catalytic activity and substrate transport are located on two different polypeptides. This review compares generic features of P-type ATPases with the rather unique KdpFABC complex and gives a comprehensive overview of common principles of catalysis as well as of special aspects connected to distinct enzyme functions.  相似文献   

9.
10.
Global cycling of environmental manganese requires catalysis by bacteria and fungi for MnO2 formation, since abiotic Mn(II) oxidation is slow under ambient conditions. Genetic evidence from several bacteria indicates that multicopper oxidases (MCOs) are required for MnO2 formation. However, MCOs catalyze one-electron oxidations, whereas the conversion of Mn(II) to MnO2 is a two-electron process. Trapping experiments with pyrophosphate (PP), a Mn(III) chelator, have demonstrated that Mn(III) is an intermediate in Mn(II) oxidation when mediated by exosporium from the Mn-oxidizing bacterium Bacillus SG-1. The reaction of Mn(II) depends on O2 and is inhibited by azide, consistent with MCO catalysis. We show that the subsequent conversion of Mn(III) to MnO2 also depends on O2 and is inhibited by azide. Thus, both oxidation steps appear to be MCO-mediated, likely by the same enzyme, which is indicated by genetic evidence to be the MnxG gene product. We propose a model of how the manganese oxidase active site may be organized to couple successive electron transfers to the formation of polynuclear Mn(IV) complexes as precursors to MnO2 formation.  相似文献   

11.
Magnetospirillum gryphiswaldense MSR‐1 synthesizes membrane‐enclosed magnetite (Fe3O4) nanoparticles, magnetosomes, for magnetotaxis. Formation of these organelles involves a complex process comprising key steps which are governed by specific magnetosome‐associated proteins. MamB, a cation diffusion facilitator (CDF) family member has been implicated in magnetosome‐directed iron transport. However, deletion mutagenesis studies revealed that MamB is essential for the formation of magnetosome membrane vesicles, but its precise role remains elusive. In this study, we employed a multi‐disciplinary approach to define the role of MamB during magnetosome formation. Using site‐directed mutagenesis complemented by structural analyses, fluorescence microscopy and cryo‐electron tomography, we show that MamB is most likely an active magnetosome‐directed transporter serving two distinct, yet essential functions. First, MamB initiates magnetosome vesicle formation in a transport‐independent process, probably by serving as a landmark protein. Second, MamB transport activity is required for magnetite nucleation. Furthermore, by determining the crystal structure of the MamB cytosolic C‐terminal domain, we also provide mechanistic insight into transport regulation. Additionally, we present evidence that magnetosome vesicle growth and chain formation are independent of magnetite nucleation and magnetic interactions respectively. Together, our data provide novel insight into the role of the key bifunctional magnetosome protein MamB, and the early steps of magnetosome formation.  相似文献   

12.
Penicillin acylases are industrially important enzymes for the production of 6‐APA, which is used extensively in the synthesis of secondary antibiotics. The enzyme translates into an inactive single chain precursor that subsequently gets processed by the removal of a spacer peptide connecting the chains of the mature active heterodimer. We have cloned the penicillin G acylase from Kluyvera citrophila (KcPGA) and prepared two mutants by site‐directed mutagenesis. Replacement of N‐terminal serine of the β‐subunit with cysteine (Serβ1Cys) resulted in a fully processed but inactive enzyme. The second mutant in which this serine is replaced by glycine (Serβ1Gly) remained in the unprocessed and inactive form. The crystals of both mutants belonged to space group P1 with four molecules in the asymmetric unit. The three‐dimensional structures of these mutants were refined at resolutions 2.8 and 2.5 Å, respectively. Comparison of these structures with similar structures of Escherichia coli PGA (EcPGA) revealed various conformational changes that lead to autocatalytic processing and consequent removal of the spacer peptide. The large displacements of residues such as Arg168 and Arg477 toward the N‐terminal cleavage site of the spacer peptide or the conformational changes of Arg145 and Phe146 near the active site in these structures suggested probable steps in the processing dynamics. A comparison between the structures of the processed Serβ1Cys mutant and that of the processed form of EcPGA showed conformational differences in residues Argα145, Pheα146, and Pheβ24 at the substrate binding pocket. Three conformational transitions of Argα145 and Pheα146 residues were seen when processed and unprocessed forms of KcPGA were compared with the substrate bound structure of EcPGA. Structure mediation in activity difference between KcPGA and EcPGA toward acyl homoserine lactone (AHL) is elucidated.  相似文献   

13.
Strict and facultative anaerobes depend on a class III ribonucleotide reductase for their growth. These enzymes are the sole cellular catalysts for de novo biosynthesis of the deoxyribonucleotides needed for DNA chain elongation and repair. In its active form, the class III ribonucleotide reductase from Escherichia coli contains a free radical located on the G681 residue which is essential for the activation of the ribonucleotide substrate toward its reduction. The 3D structure of the homologous enzyme from bacteriophage T4 has revealed the presence of a metal center bound to four conserved cysteine residues. In this report we identify the metal of the E. coli enzyme as Zn. We show that the presence of Zn in this site protects the protein from proteolysis and prevents the formation of disulfide bridges within it. Finally, we show with the fully Zn-loaded reductase that thioredoxin or small thiols are dispensable for the formation of the glycyl radical. However, they are necessary for obtaining high turnover numbers, suggesting that they intervene in radical transfer steps subsequent to the formation of the glycyl radical.  相似文献   

14.
Importin‐αs are essential adapter proteins that recruit cytoplasmic proteins destined for active nuclear import to the nuclear transport machinery. Cargo proteins interact with the importin‐α armadillo repeat domain via nuclear localization sequences (NLSs), short amino acids motifs enriched in Lys and Arg residues. Plant genomes typically encode several importin‐α paralogs that can have both specific and partially redundant functions. Although some cargos are preferentially imported by a distinct importin‐α it remains unknown how this specificity is generated and to what extent cargos compete for binding to nuclear transport receptors. Here we report that the effector protein HaRxL106 from the oomycete pathogen Hyaloperonospora arabidopsidis co‐opts the host cell's nuclear import machinery. We use HaRxL106 as a probe to determine redundant and specific functions of importin‐α paralogs from Arabidopsis thaliana. A crystal structure of the importin‐α3/MOS6 armadillo repeat domain suggests that five of the six Arabidopsis importin‐αs expressed in rosette leaves have an almost identical NLS‐binding site. Comparison of the importin‐α binding affinities of HaRxL106 and other cargos in vitro and in plant cells suggests that relatively small affinity differences in vitro affect the rate of transport complex formation in vivo. Our results suggest that cargo affinity for importin‐α, sequence variation at the importin‐α NLS‐binding sites and tissue‐specific expression levels of importin‐αs determine formation of cargo/importin‐α transport complexes in plant cells.  相似文献   

15.
The yeast DNA polymerase-primase complex is composed of four polypeptides designated p180, p74, p58 and p48. All the genes coding for these polypeptides have now been cloned. By protein sequence comparison we found that yeast DNA polymerase I (α) shares three major regions of homology with several DNA polymerases. A fourth region, called region P, is conserved in yeast and human DNA polymerase α. The site of a temperature-sensitive mutation in the POL1 gene which causes decreased stability of the polymerase-primase complex has been sequenced and falls in this region. We hypothesize that region P is important for protein—protein interactions. Highly selective biochemical methods might be similarly important to distinguish functional domains in the polymerase-primase complex. An autocatalytic affinity labeling procedure has been applied to map the active center of yeast DNA primase. From this approach we conclude that both primase subunits (p48 and p58) participate in the formation of the catalytic site of the enzyme.  相似文献   

16.
G. Unden  A. Kröger 《BBA》1982,682(2):258-263
Fumarate reduction by formate in Vibrio succinogenes is catalyzed by a membrane-bound electron-transport chain, and is coupled with the phosphorylation of ADP. The electron-transport chain was reconstituted in liposomes from the isolated components. The formate dehydrogenase complex (three different peptides), the fumarate reductase complex (three different peptides) and vitamin K-1 were required for the electron transport. The pathway of the electrons from formate to fumarate in the reconstituted chain was identical with that in the bacterial membrane. Each of the active enzyme complexes in the liposomes participated in the electron transport. This was valid for proteoliposomes with ratios of the contents of the two enzyme complexes ranging between 0.1 and 10. This indicates that vitamin K-1 forms a diffusible pool within the liposomal membrane that allows every quinone molecule to react with each molecule of the two enzyme complexes.  相似文献   

17.
Vigna unguiculata (cowpea) is a legume adapted to high temperatures and is sensitive to low temperatures. Temperature is one of the limiting factors of growth and yield for many crops but its effect on cowpea metabolism is not known. We investigated the effect of chilling on activity of vacuolar proton pumps (V-ATPase and V-PPase) and their protein content in tonoplast vesicles of cowpea hypocotyls. Seedlings grown for 7 days at 10 or 4°C were used for experiments. Chilling treatment at 10 or 4°C markedly suppressed growth of cowpea seedlings. Following chilling at 10 and 4°C, activity of both proton pumps and the relative amount of V-PPase and subunit A of V-ATPase were significantly increased. Both substrate hydrolysis and H+ transport activities of V-PPase remained at relatively high levels during chilling treatment. For V-ATPase, treatment at 10°C for 6 days increased the ATP hydrolysis activity. However, the H+ transport activity of the enzyme was increased when treated for 4 days but was markedly decreased when treated for 6 days. Our results provide evidence for different regulation for these vacuolar proton pumps, indicating that V-PPase is the more stable proton pump throughout chilling stress.  相似文献   

18.
A fibrinolytic metalloprotease with in vitro fibrinolytic effects was purified from the edible mushroom Pleurotus ferulae using several chromatography steps including anion and ion exchange, gel filtration, and fast protein liquid chromatography columns. The molecular mass of the enzyme was estimated to be 20.0?kDa, as determined using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fibrin zymography. The protease was active at 50°C, and pH 4.0, 5.0, and 8.0. The fibrinolytic activity of the enzyme was inhibited by ethyleneglycol-bis-(2-aminoethyl)-N,N,N′,N′ tetraacetic acid and strongly inhibited by two metal ions, Cu and Mg. In vitro assays evaluating fibrinolytic activity on a fibrin plate, fibrin turbidity, and thrombolytic activity on fibrin clots using human fibrinogen and human thrombin revealed that the enzyme could hydrolyze fibrin polymers directly and inhibit the formation of fibrin clots. In activated partial thromboplastin time (APTT) and prothrombin time assays, the enzyme strongly prolonged the APTT, which detects an activity of intrinsic and common pathways. The enzyme showed strong in vivo protective effect against mortality/paralysis from epinephrine plus collagen-induced acute thromboembolism in in vivo model. Our findings suggest that the enzyme may have a potential for treatment and prevention of thrombosis-relative diseases.  相似文献   

19.
HIV-1 integrase (IN) oligomerization and DNA recognition are crucial steps for the subsequent events of the integration reaction. Recent advances described the involvement of stable intermediary complexes including dimers and tetramers in the in vitro integration processes, but the initial attachment events and IN positioning on viral ends are not clearly understood. In order to determine the role of the different IN oligomeric complexes in these early steps, we performed in vitro functional analysis comparing IN preparations having different oligomerization properties. We demonstrate that in vitro IN concerted integration activity on a long DNA substrate containing both specific viral and nonspecific DNA sequences is highly dependent on binding of preformed dimers to viral ends. In addition, we show that IN monomers bound to nonspecific DNA can also fold into functionally different oligomeric complexes displaying nonspecific double-strand DNA break activity in contrast to the well known single strand cut catalyzed by associated IN. Our results imply that the efficient formation of the active integration complex highly requires the early correct positioning of monomeric integrase or the direct binding of preformed dimers on the viral ends. Taken together the data indicates that IN oligomerization controls both the enzyme specificity and activity.  相似文献   

20.
Summary Two pure, homogeneous xyloglucan-hydrolyzing enzymes from germinated nasturtium seeds have been used to localize xyloglucans specifically in seed cell walls. The enzymes, a novelendo (14)--d-glucanase which shows absolute specificity towards xyloglucans and a -d-galactosidase which is capable of removing galactosyl residues from polymeric xyloglucans, were used to stabilize gold sols. The complexes were applied to ultrathin sections of nasturtium (Tropaeolum majus L) and tamarind (Tamarindus indica L) seeds. The gold complexes prepared from the active enzyme proteins retained enzyme activity, and such complexes gave extremely weak section-labelling or no labelling at all. When the enzymes were subjected to heat-deactivation before being used to stabilize the gold sols, gold complexes were obtained which lacked enzyme activity, but which gave strong, specific labelling of xyloglucans in ultrathin sections. The specificity of the labelling was checked by substrate-competition, by pretreatment of sections with the active and heat-denaturated enzymes and by comparing the labelling of xyloglucan-containing storage cells with other cell types in the same section. The labelling was maximal at the pH which was optimal for the active enzyme. We conclude that the enzyme-gold complexes which retain high activity against the substrate to be localized are likely to be unsuitable as cytochemical probes because they may causein situ substrate modification. In the case of the enzyme complexes described here the specific localization obtained with the gold complexes prepared from heat deactivated enzymes may be attributable to the retention by the heat-treated enzymatically-inactive proteins of substrate recognition. Alternatively, some recovery of the native configuration of the heat-denatured protein may have occurred on adsorption to the surface of the colloidal gold particle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号