首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uptake of soil water by plants may result in significant gradients between bulk soil and soil in the vicinity of roots. Few experimental studies of water potential gradients in close proximity to roots, and no studies on the relationship of water potential gradients to the root and leaf water potentials, have been conducted. The occurrence and importance of pre-dawn gradients in the soil and their relation to the pre-dawn root and leaf water potentials were investigated with seedlings of four species. Pre-germinated seeds were grown without watering for 7 and lid in a silt loam soil with initial soil matric potentials of -0.02, -0.1 and -0.22 MPa. Significant gradients, independent of the species, were observed only at pre-dawn soil matric potentials lower than -0.25 MPa; the initial soil matric potentials were -0.1 MPa. At an initial bulk soil matric potential of -0.22 MPa, a steep gradient between bulk and rhizoplane soil was observed after 7 d for maize (Zea mays L. cv. Issa) and sunflower (Helianthus annuus L. cv. Nanus), in contrast to barley (Hordeum vulgare L. cv. Athos) and wheat (Triticum aestivum L. cv. Kolibri). Pre-dawn root water potentials were usually about the same as the bulk soil matric potential and were higher than the rhizoplane soil matric potential. Pre-dawn root and leaf water potentials tended to be much higher than rhizoplane soil matric potentials when the latter were lower than -0.5 MPa. It is concluded that plants tend to become equilibrated overnight with the wetter bulk soil or with wetter zones in the bulk soil. Plants can thus circumvent negative effects of localized steep pre-dawn soil matric potential gradients. This may be of considerable importance for water uptake and growth in drying soil.  相似文献   

2.
Poor crop stand is a common problem in saline areas. Germination and seedling emergence may be depressed as a result of impeded aeration, saline or dry conditions. In this study, we examined the effects of salinity and moisture stress and their interactions on seed germination and seedling growth of carrots. Variable soil matric and osmotic potentials were either obtained by equilibrating soil salinized to different degrees on a 0.5 MPa ceramic plate soil moisture extractor or by adding different amounts of salt solutions to the same mass of air-dried soil, based on a previously determined soil moisture release curve, and allowing to equilibrate for 1 week. Germination decreased significantly in the investigated silty soil (Aquic Ustifluvent) at soil moisture potentials higher than −0.01 MPa, whereas osmotic potentials as low as −0.5 MPa did not influence germination. Matric potentials of −0.3 and −0.4 MPa, respectively, resulted in a strong decrease (35–95%) of germination and delayed germination by 2 to 5 days in the silty soil to which different amounts (18 and 36%, respectively) and sizes (0.8–1.2 mm and 1.5–2.2 mm, respectively) of sand particles had been added. No effect of sand and grain diameter was detected. Germination was not affected by comparable osmotic potentials. Seedling growth showed a much higher sensitivity than germination to decreasing matric potentials, but was not affected by osmotic potentials ranging from −0.05 to −0.5 MPa. Optimum shoot growth occurred at matric potentials between −0.025 and −0.1 MPa. Shoot and root growth decreased markedly at matric potentials higher than −0.01 MPa. Fresh weight of shoots decreased gradually at matric potentials lower than −0.2 MPa. Root growth was significantly increased at matric potentials of −0.1 to −0.3 MPa, whereas comparable osmotic potentials did not have equivalent effects. It is concluded that germination and seedling growth are differently affected by comparable matric and osmotic stresses and that water stress exerts a more negative effect than salt stress.  相似文献   

3.
Roots of plants growing in dry soil often experience large mechanical impedance because the decreased soil water content is associated with increased in soil strength. The combined effect of mechanical impedance and water stress hinders the establishment of seedlings in many soils, but little is known about the interaction between these two stresses. A method has been designed that, for the first time, measured the maximum axial force exerted by a root growing under controlled water stress. Using this technique the axial force exerted by a pea radicle was measured using a shear beam, while the seedling was suspended in an aerate solution of polyethylene glycol 20 000 at osmotic potentials between 0 and -0.45 MPa. The maximum growth force was then divided by the cross-sectional area of the root to give the maximum axial growth pressure. The value of maximum axial growth pressure decreased linearly from 0.66 and 0.35 MPa as the osmotic potentials of the solution of PEG decreased from 0 to -0.45 MPa. In dry soil, therefore, the maximum strength of soil that a root can penetrate is decreased because of the decrease in maximum growth pressure. The elongation rates of unimpeded roots were similar whether the roots were subject to either a matric potential in soil or to an osmotic potential in a solution of PEG.Key words: Pisum sativum L, pea, mechanical impedance, axial growth pressure, water stress, PEG 20 000.   相似文献   

4.

Background

We investigated interacting effects of matric potential and soil strength on root elongation of maize and lupin, and relations between root elongation rates and the length of bare (hairless) root apex.

Methods

Root elongation rates and the length of bare root apex were determined for maize and lupin seedlings in sandy loam soil of various matric potentials (?0.01 to ?1.6 MPa) and bulk densities (0.9 to 1.5 Mg m?3).

Results

Root elongation rates slowed with both decreasing matric potential and increasing penetrometer resistance. Root elongation of maize slowed to 10 % of the unimpeded rate when penetrometer resistance increased to 2 MPa, whereas lupin elongated at about 40 % of the unimpeded rate. Maize root elongation rate was more sensitive to changes in matric potential in loosely packed soil (penetrometer resistances <1 MPa) than lupin. Despite these differing responses, root elongation rate of both species was linearly correlated with length of the bare root apex (r2 0.69 to 0.97).

Conclusion

Maize root elongation was more sensitive to changes in matric potential and mechanical impedance than lupin. Robust linear relationships between elongation rate and length of bare apex suggest good potential for estimating root elongation rates for excavated roots.  相似文献   

5.
The physical properties, in particular the water retention characteristics, of two-component growth media based on low-humified Sphagnum peat were studied. The high water retention of pure peat, which is further increased by shrinkage of the medium at desorption, yielded low air-filled porosity at high matric potentials ( –1 kPa). The addition of coarse perlite to peat decreased the shrinkage markedly and also tended to increase the low saturated hydraulic conductivity of peat, which had initially been rather low. In all media studied, the amount of water that is easily available to plants (water content retained between –1 and –10 kPa matric potential) was relatively high. In peat that contained half repellent rockwool or hydrogel, this water retention was, however, markedly lower. Between –10 and –50 kPa matric potential, water retention was rather low in all media (< 10%). Within the lowest matric potential range studied (–50 to –1500 kPa), water retention was considerably elevated in peat that contained half hydrogel. The implications of the physical properties of the media for plant-available water and aeration in the media are discussed.  相似文献   

6.
Root elongation in drying soil is generally limited by a combination of mechanical impedance and water stress. Relationships between root elongation rate, water stress (matric potential), and mechanical impedance (penetration resistance) are reviewed, detailing the interactions between these closely related stresses. Root elongation is typically halved in repacked soils with penetrometer resistances >0.8-2?MPa, in the absence of water stress. Root elongation is halved by matric potentials drier than about -0.5?MPa in the absence of mechanical impedance. The likelihood of each stress limiting root elongation is discussed in relation to the soil strength characteristics of arable soils. A survey of 19 soils, with textures ranging from loamy sand to silty clay loam, found that ~10% of penetration resistances were >2?MPa at a matric potential of -10?kPa, rising to nearly 50% >2?MPa at - 200?kPa. This suggests that mechanical impedance is often a major limitation to root elongation in these soils even under moderately wet conditions, and is important to consider in breeding programmes for drought-resistant crops. Root tip traits that may improve root penetration are considered with respect to overcoming the external (soil) and internal (cell wall) pressures resisting elongation. The potential role of root hairs in mechanically anchoring root tips is considered theoretically, and is judged particularly relevant to roots growing in biopores or from a loose seed bed into a compacted layer of soil.  相似文献   

7.
Application of computer assisted tomography to gamma and X-ray attenuation measurements and Na+-LIX microelectrodes were used to determine the spatial distributions of soil water content and Na+ concentrations respectively near single roots of eighteen day old lupin and radish plants. These quantities were monitored at root depths of 3, 6 and 9 cm and at zero, 2, 4, 6, and 8 hour intervals from the diurnal commencement of transpiration. The plants were subjected to two levels of transpirational demand and five Na+ soil solution concentration levels. Water extraction rates for the lupin and radish roots increased continuously with time but were substantially reduced with increasing Na+ concentration in the treatment. Water uptake was uniform along the length of the essentially constant diameter lupin roots but decreased along the tapering radish roots as the diameter and hence the surface area per unit length of the roots decreased. The accumulation of Na+ at the root surfaces of both plants increased gradually with time in a near linear fashion and was slightly higher under the higher transpiration demand. These increases were not exponential as would be expected with non-absorption by the roots and this is considered to be due to back diffusion at the relatively high water contents used. At these water contents matric potentials had a much smaller influence on transpiration than osmotic potentials. The relationships between leaf water potentials (Ψ1) and osmotic potentials at the root surfaces were linear with the decreases in Ψ1 almost exactly reflecting the decreases in Ψπ indicating rapid plant adjustment. Leaf water potentials decreased progressively with time and the relationships between leaf water potential and the transpiration rate were also linear supporting the suggestion of constant plant resistances at any given concentration.  相似文献   

8.
Colonization and survival of Phytophthora cinnamomi in roots was tested in 3 months old, axenically grown seedlings of Eucalyptus maculata (field resistant) and E. sieberi (susceptible). The roots were inoculated, then one week later were excised and buried in three non-sterile, conducive soils; a lateritic gravel, an infertile duplex soil, a loamy sand as well as in a fertile, suppressive krasnozem. Pathogen viability, percentage root colonization and chlamydospore numbers were examined at matric potentials of ?1/3, ?5 and ?10 bar after periods of 10, 100 and 200 days at 21°C. At 10 days, survival was 100% in the form of mycelium and the only significant difference was between the two Eucalyptus species. At 100 days survival was solely due to chlamydospores, but the pathogen was viable in all inoculated roots and at each matric potential. At 200 days soils had dried to less than ?10 bars and the pathogen failed to survive. No significant differences were found between the two pathogen isolates but significant differences were obtained between the susceptible and field resistant Eucalyptus species. Pathogen viability, percentage root colonization and chlamydospore number were highly correlated with soil types and matric potential. These components declined with decreasing soil matric potential. The Krasnozem was only suppressive at relatively high soil matric potentials (?1/3 bar). At lower values (?5, ?10 bar) survival of the pathogen, chlamydospore numbers and percentage colonization of the roots in the Krasnozem were comparable with that of the 3 conducive soils tested. Chlamydospores were present, but in low numbers in roots buried in the suppressive soil at ?1/3 bar.  相似文献   

9.
Cook  Amanda  Marriott  C.A.  Seel  W.  Mullins  C.E. 《Plant and Soil》1997,190(2):279-287
Sand packed to a constant dry bulk density, is frequently used as an artificial growth medium in which to simulate the effects of a constant mechanical impedance on root growth. This research aimed to determine whether conventional packing resulted in constant mechanical impedance and to test alternative packing regimes. Perspex cylinders 300 mm tall with a 49 mm internal diameter were packed with moist sand to uniform and varying bulk densities to examine which type of packing gave the greatest uniformity of penetration resistance (PR) with depth. The cylinders packed to a constant bulk density (1.48, 1.55, and 1.6 Mg m-3) all had measured PR profiles which increased markedly with depth by approximately 1, 1.5 and 3 MPa, respectively, within the top 100 mm. Between 100–300 mm depth, these same cylinders showed reductions in PR of up to 1, 2 and 2 MPa respectively. These results show that sand packed to a constant bulk density with depth would not provide a uniform mechanical impedance to plant roots.By packing sand to different bulk densities at different depths, we obtained packed cylinders that had much more uniform PR profiles (with average values of 0.25, 1.40 and 2.30 MPa). Below a depth of 50 mm, the coefficients of variation for replicate cylinders packed in this way were 12%, 5% and 18% for the 0.25, 1.40, and 2.30 MPa treatments respectively. For experiments with single plants, the lower PR values that were unavoidable near to the surface (< 50 mm) can be avoided by sowing seeds at the base of a funnel inserted into the cylinder. Treatments such as these can provide reproducible growth media, with adequate water/nutrient and aeration status for the study of plant response to uniform mechanical impedance.  相似文献   

10.
The least limiting water range (LLWR) was introduced as an integrated soil water content indicator, measuring the impact of mechanical impedance, oxygen and water availability on water uptake and crop growth. However, a rigorous definition of the upper limit of the LLWR using plant physiological and soil physical concepts was not given. We introduce in this study an upper limit of the LLWR, based on soil physical and plant physiological properties. We further evaluate the sensitivity of this boundary to different soil and crop variables, and compare the sensitivity of the upper limit of the LLWR to previous definitions of soil water content at field capacity. The current study confirms that the upper limit of the LLWR can be predicted from knowledge of the soil moisture characteristic curve, plant root depth and oxygen consumption rate. The sensitivity analysis shows further that the upper limit of the LLWR approaches the volumetric soil water content at saturation when the oxygen consumption rate by plants becomes less than 2 µmol m?3 s?1. When plants are susceptible to aeration (e.g. potato and avocado), there is a big difference between the upper limit of the LLWR and the soil water content at field capacity, in particular for sandy soils. Results also show that the soil water content at aeration porosity corresponding to 10% cannot be considered as an appropriate upper limit of LLWR because it does not appropriately reflect the crop water requirements. Similar poor results are obtained when considering the soil water content at matric potential ?0.033 MPa or when defining the soil water content at field capacity based on drainage flux rate. It is observed that the upper limit of the LLWR is higher than either soil water content at ?0.033 MPa matric potential or soil water content at field capacity as based on drainage flux rate, especially in sandy soils.  相似文献   

11.
This study examined the potential for inter-specific differencesin root aeration to determine wetland plant distribution innature. We compared aeration in species that differ in the typeof sediment and depth of water they colonize. Differences inroot anatomy, structure and physiology were applied to aerationmodels that predicted the maximum possible aerobic lengths anddevelopment of anoxic zones in primary adventitious roots. Differencesin anatomy and metabolism that provided higher axial fluxesof oxygen allowed deeper root growth in species that favourmore reducing sediments and deeper water. Modelling identifiedfactors that affected growth in anoxic soils through their effectson aeration. These included lateral root formation, which occurredat the expense of extension of the primary root because of theadditional respiratory demand they imposed, reducing oxygenfluxes to the tip and stele, and the development of stelar anoxia.However, changes in sediment oxygen demand had little detectableeffect on aeration in the primary roots due to their low wallpermeability and high surface impedance, but appeared to reduceinternal oxygen availability by accelerating loss from laterals.The development of pressurized convective gas flow in shootsand rhizomes was also found to be important in assisting rootaeration, as it maintained higher basal oxygen concentrationsat the rhizome–root junctions in species growing intodeep water. Copyright 2000 Annals of Botany Company Aeration, diffusion, ecophysiology, flooding, model, oxygen, respiration, root, wetland  相似文献   

12.
Measurements with a pressure chamber were made of the xylem water potential of leaves, shoots and roots from bean plants (Pkaseolus vulgaris L. cv. Processor) grown with a 12 hour dark period and natural or artificial light conditions during the day. The water potentials were measured at the end of a dark period and during the light period. Measurements taken at the end of the dark period indicated normal potential gradients within the soil/plant system (leaf < shoot < root < soil), when the matric potential of soil water was relatively high (above ?0.02 bar), and the gradients then also remained normal during the day (natural light). When the soil water potential was ?1 bar or lower in the morning, however, the root xylem water potential was higher than the soil water potential; at very low soil water potentials (< ?4 bar) it remained higher during most of the day. In this case also leaf and shoot xylem water potentials were higher than the soil water potential in the early morning, although decreasing rapidly in daylight. Under artificial light, both leaf and root water potentials were higher than the soil water potential throughout the whole diurnal cycle when the latter potential was below ?4 bar. From measurements of stomatal diffusion resistance, transpiration, relative water content of leaves and of changes in the matric potential of soil water, it was concluded that when the matric potential of soil water was low, water could be taken up by the plant against a water potential gradient. Because leaf xylem water potential was always lower than root xylem water potential, the mechanism involved in the inversion of water potential gradient must be localized in the roots, and probably related to ion uptake. Symbols and abbreviations used in the text: Ψ: Plant water potential (thermocouple psychrometer); Ψx: Xylem water potential (pressure chamber); Ψs: Osmotic potential of xylem sap; Ψm: Matric potential of soil water; RWC: Relative water content.  相似文献   

13.
Information on the response of root growth and morphology to soil strength is useful for testing suitability of existing and new tillage methods and/or for selecting plants suitable for a specific site with or without tillage. Although there is extensive published information on the root growth-soil strength relationships for annual agricultural plants, such information is scarce for woody, perennial tree species. The purpose of this study is to examine growth and morphology of the root systems of 17-day-old eucalypt seedlings with respect to variation in soil strength. Soil strength in this study was varied by compaction of a well-aggregated clay soil to bulk densities of 0.7–1.0 Mg m-3 whilst maintaining adequate water availability and aeration for plant growth. Lengths and tip-diameters of primary and lateral roots were measured on the excavated root systems of seedlings.With increase in bulk density and also soil strength (expressed as penetrometer resistance), total length of primary and lateral roots decreased. There were 71 and 31% reduction in the lengths of primary and lateral roots respectively with an increase in penetrometer resistance from 0.4 to 4.2 MPa. This indicated primary roots to be more sensitive to high soil strength than the lateral roots. Average length of lateral roots and diameters of both primary and lateral root tips increased with an increase in soil strength as well. There was greater abundance of lateral roots (no. of lateral roots per unit length of primary root) and root hairs with increased soil strength. The observed root behaviour to variable soil strength is discussed in the context of compensatory growth of roots and overall growth of plants.  相似文献   

14.
A system was designed, constructed, tested, and used to growBrassica rapa L. seedling roots which were exposed to O2 concentrations from 0 to 0.21 mol mol−1, water potentials from 0 to −80 kPa, temperatures from 10 to 34°C, and mechanical impedance from 0 to 20.8 kPa. The experimental design was a central composite rotatable design with seven replications of the center point. Measurements were taken of taproot length, taproot diameter at the point of initiation of root hairs (diameter 1), and one cm above the first measurement (diameter 2), and total length and number of first-order laterals. Temperature had the greatest effect on seedling root growth, with linear and quadratic temperature effects significant for all root measurements except taproot diameter 2 which just had a significant linear effect. Water potential had a significant linear effect on lateral length and number of laterals and a significant quadratic effect on taproot diameter 1. Mechanical impedance had a significant effect only on taproot diameter 2. Oxygen was not significant for any root measurement. The mechanical impedance by water potential interaction was significant for taproot length and taproot diameter 1. A temperature optimum was found for taproot length, taproot diameter 1, lateral length, and lateral number, at 26.0, 42.5, 26.5, and 26.4°C, respectively. Taproot diameter 1 had a water potential optimum at −36.5 kPa, whereas taproot diameter 2 had a mechanical impedance optimum at 12.5 kPa. A growth cell designed for this study allows independent control of soil strength, water potential, oxygen concentration, and temperature. Thus, the cell provides the capability which was demonstrated forBrassica rapa L. to grow seedling roots under complete control of the soil physical properties.  相似文献   

15.
Abstract The lignotuberous mallee Eucalyptus behriana F. Muell, had much lower predawn leaf water potentials (not higher than – 1.2MPa) than other eucalypts (as high as – 0.2MPa), even after extended rain. This led to the expectation that the lignotuber of E. behriana might have specific hydraulic characteristics. Keeping the soil around partially defoliated mallces for several days underwater did not raise the water status above the maximum leaf water potential observed under natural conditions. Digging a plant out and placing its roots in water after removal of the soil rapidly increased the water status to a level consistant with other eucalypts. This indicated that the major impedance to water uptake was a component of the soil rather than in the roots or in the lignotuber. Some of the individual mallces had only two major stems or branches. One stem or branch was kept covered throughout the experiments to prevent transpiration. The other stem was subjected to a variety of different conditions in order to modify water loss from it. The transpiring branch affected the water status of the non-transpiring plant parts. Hydraulic resistances in the shoot and root/lignotuber were determined from differences in the leaf water potential of covered and uncovered branches, at high water flow rates through the plant. Resistances in branches, including the liquid phase component of the leaf, were significantly larger than in root or lignotuber. The total plant hydraulic resistance of E. behriana was similar to that of other eucalypts, such as E. pauciflora Sieb. ex Spreng. or E. delegatensis R. T. Bak., even though its growth form was different and its natural leaf water potentials were much lower. An osmotic adjustment at the leaf level was observed in the mallee, keeping its bulk leaf turgor in the same range as compared to the other eucalypt species.  相似文献   

16.
We studied the possibility whether the initiation of secondary roots is regulated by the air-filled porosity in soil, i.e. the availability of oxygen in the soil. Maize plants were grown in long PVC tubes (1 m long and 12 cm diameter) and were unwatered for different numbers of days so that variations of soil water content with depth were achieved on the same date with plants at the same age. The plants were harvested when their root systems were established in the whole soil column and watering had been withheld for 0, 15, 20, 25 days. A decrease of soil water content was significantly correlated with an increase of air-filled porosity in soil. The number of secondary lateral roots from segments of primary adventitious roots increased dramatically when soil water content decreased from field capacity to about 0.05 g water g-1 dried soil. The total dried mass of roots at different soil depths was also positively correlated with soil air-filled porosity. It was observed that the elongation of the initiated secondary roots responded differently to the variations of soil air-filled porosity. The length of secondary roots increased initially when the soil was dried from field capacity to 0.18 g g-1 dried soil (water potential at about−0.2 MPa, air-filled porosity 0.26 cm3 cm-3), but was drastically reduced when the soil was dried further. Obviously elongation of secondary roots was inhibited when soil water potential began to deviate substantially from an optimum value. The present results suggested that the initiation of secondary roots was greatly promoted by the increase of air-filled soil porosity, i.e. availability of oxygen. This conclusion was further verified in a separate experiment where solution-cultured maize seedlings were subjected to different aeration treatments. An obvious increase in secondary root initiation was found in plants which were aerated with normal air (21% O2) than in plants which were either not aerated or aerated with 5% O2 air. ei]Section editor: B E Clothier  相似文献   

17.
The suitability of microtensiometers to measure the spatial variation of soil matric potential and its diurnal change was tested in a pot experiment with pearl millet (Pennisetum americanum [L.] Leeke) in a sandy soil as the soil dried out.The temporal and spatial resolution of this technique allowed precise measurement of soil matric potential and thus estimation of soil water extraction from different compartments as well as from the whole rooting zone. The technique also allowed the measurement of rehydration of plants at night and root water uptake rate per unit soil volume or per unit root length. The precision of determination of root water uptake depended greatly on the accuracy of the estimate of hydraulic conductivity, which was derived from a bare soil and might be different for a cropped soil owing to aggregation induced by the root system. A linear relationship between root length and water uptake was found (r2=0.82), irrespective of variation in soil water content between compartments and despite the variation in root age, xylem differentiation and suberin formation expected to exist between different compartments of the rooting zone. As the experiment was carried out in a range of soil matric potentials between –4 and –30 kPa, drought stress did not occur. Further information at lower soil matric potentials are required, to address questions such as the importance of soil resistance for water uptake, or which portion of the root system has to be stressed to induce hormonal signals to the shoot. The microtensiometer technique can be applied to soil matric potentials up to –80 kPa.  相似文献   

18.
In a two year field investigation fresh kelp (M. integrifolia) was broadcast and incorporated into plots of silty clay loam soil in the lower Fraser Valley of British Columbia. The effects of this amendment on bulk density, particle density, total porosity and aeration (volume of pores occupied by air after a saturated core was allowed to freely drain for 12 h at a soil water potential of −0.60 m) were measured. Soil aeration was increased in the first year with 30 and 60 t ha-1 kelp application but decreased with the 120 t ha-1 application. This soil aeration effect did not persist into the second year. Soil bulk density, particle density and total porosity were not significantly affected.  相似文献   

19.
Former laboratory results indicate that shoot elongation at low light intensities of Chara aspera is absent already at 10 psu which is within the physiologically optimal salinity range for brackish water populations. To investigate if similar restrictions occur in the field, density and morphology of C. aspera were compared between three freshwater and three brackish water sites along its depth range. The lower depth limit of C. aspera varied considerably among sites (30–600 cm) related to turbidity. Light availability at the lower depth limit corresponded to about 15% of surface irradiance in freshwater and brackish water with lower salinity (3.4 psu). Total length increased and fresh weight:length ratio decreased with depth at these sites indicating shoot elongation related to lower light availability. Due to shoot elongation, light availability was far higher at the upper parts of the shoot than at the bottom in the turbid sites. Light availability at the lower depth limit was higher (about 40%) at two sites with higher salinity (7–8 psu), where no shoot elongation was observed at the lower depth limit. Instead, the plants were stunted and often covered with filamentous algae or shaded by other rooted submerged macrophytes indicating competitive disadvantages of C. aspera at higher salinities. As growth in high densities (mat formation) exposes the plants to severe self-shading, it is suggested that shoot elongation is a prerequisite to mat formation. Dense vegetation of C. aspera was found only in freshwater and brackish water with lower salinity. Single, richly branched plants occurred in clearwater sites with higher salinity. C. aspera was not found in “double stress” environments with both high turbidity and high salinity: We asume that the species is a poor competitor under these conditions. Our results indicate that morphological differences between freshwater and brackish water populations of C. aspera are at least partly explained by salinity rather than genetic differences.  相似文献   

20.
The importance of macrostructure to root growth of ryegrass (L. perenne) seedlings sown on the soil surface was studied in two soils in which the macrostructure had resulted mainly from root growth and macro-faunal activity. Sets of paired soil cores were used, one of each pair undisturbed and the other ground and repacked to the field bulk density. Undisturbed and repacked soils were first compared at equal water potentials in the range −1.9 to −300 kPa. At equal water potential, the undisturbed soil always had the greater strength (penetration resistance), and root growth was always greater in the repacked soil with no macrostructure than it was in the soil with macrostructure intact. At equal high strength (low water potentials) it appeared that root growth was better when soils were structured. When strength was low (high water potentials), root growth was better in the unstructured soil. Soils were then compared during drying cycles over 21 days. The average rate at which roots grew to a depth of 60 mm, and also the final percentage of plants with a root reaching 60 mm depth, was greatest in repacked soils without macrostructure. The species of vegetation growing in the soil before the experiment affected root growth in undisturbed soil; growth was slower where annual grasses and white clover had grown compared with soil which had supported a perennial grass. It appears that relatively few roots locate and grow in the macrostructure. Other roots grow in the matrix, if it is soft enough to be deformed by roots. Roots in the matrix of a structured soil grow more slowly than roots in structureless soil of equal bulk density and water potential. The development of macrostructure in an otherwise structureless soil, of the type studied, is of no advantage to most roots. However, once a macrostructure has developed, the few roots locating suitable macropores are able to grow at low water potential when soil strength is high. The importance of macrostructure to establishing seedlings in the field lies in rapid penetration of at least a few roots to a depth that escapes surface drying during seasonal drought. ei]{gnB E}{fnClothier}  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号