首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Desai C  Purdy J 《Genetics》2003,164(2):575-588
We have isolated and characterized a series of 18 chemically induced alleles of Ptp69D ranging in strength from viable to worse than null, which represent unique tools for probing the structure, function, and signaling pathway of DPTP69D. Three alleles are strongly temperature sensitive and were used to define the developmental periods requiring DPTP69D function; adult health requires DPTP69D during the mid- to late-pupal stage, eclosion requires DPTP69D during the early to mid-larval stage, and larval survival requires DPTP69D during embryogenesis. Mutations predicted to abolish the phosphatase activity of the membrane proximal D1 domain severely reduce but do not abolish DPTP69D function. Six alleles appear null; only 20% of null homozygotes pupate and <5% eclose, only to fall into the food and drown. One allele, Ptp69D(7), confers axon and viability defects more severe than those of the null phenotype. Sequence analysis predicts that Ptp69D(7) encodes a mutant protein that may bind but not release substrate. Like mutations in the protein tyrosine phosphatase gene Dlar, strong Ptp69D alleles cause the ISNb nerve to bypass its muscle targets. Genetic analysis reveals that the bypass defect in Dlar and Ptp69D mutants is dependent upon DPTP99A function, consistent with the hypothesis that DPTP69D and DLAR both counteract DPTP99A, allowing ISNb axons to enter their target muscle field.  相似文献   

2.
A search for c-Abl interacting proteins resulted in the recovery of PSTPIP1, originally identified as a binding protein of the PEST-type protein tyrosine phosphatases (PTP). PSTPIP1 was phosphorylated by c-Abl, and growth factor-induced PSTPIP1 phosphorylation was diminished in Abl null fibroblasts. PSTPIP1 was able to bridge c-Abl to the PEST-type PTPs. Several experiments suggest that the PEST-type PTPs negatively regulate c-Abl activity: c-Abl was hyperphosphorylated in PTP-PEST-deficient cells; disruption of the c-Abl-PSTPIP1-PEST-type PTP ternary complex by overexpression of PSTPIP1 mutants increased c-Abl phosphotyrosine content; and PDGF-induced c-Abl kinase activation was prolonged in PTP-PEST-deficient cells. Dephosphorylation of c-Abl by PEST-type PTP represents a novel mechanism by which c-Abl activity is regulated.  相似文献   

3.
Mutations in protein O-mannosyltransferases (POMTs) result in severe brain defects and congenital muscular dystrophies characterized by abnormal glycosylation of α-dystroglycan (α-Dg). However, neurological phenotypes of POMT mutants are not well understood, and the functional substrates of POMTs other than α-Dg remain unknown. Using a Drosophila model, here we reveal that Dg alone cannot account for the phenotypes of POMT mutants, and identify Protein tyrosine phosphatase 69D (PTP69D) as a gene interacting with POMTs in producing the abdomen rotation phenotype. Using RNAi-mediated knockdown, mutant alleles, and a dominant-negative form of PTP69D, we reveal that PTP69D is required for the wiring of larval sensory axons. We also found that PTP69D and POMT genes interact in this process, and that their interactions lead to complex synergistic or antagonistic effects on axon wiring phenotypes, depending on the mode of genetic manipulation. Using glycoproteomic approaches, we further characterized the glycosylation of the PTP69D transgenic construct expressed in genetic strains with different levels of POMT activity. We found that the PTP69D construct carries many O-linked mannose modifications when expressed in Drosophila with wild-type or ectopically upregulated expression of POMTs. These modifications were absent in POMT mutants, suggesting that PTP69D is a substrate of POMT-mediated O-mannosylation. Taken together, our results indicate that PTP69D is a novel functional substrate of POMTs that is required for axon connectivity. This mechanism of POMT-mediated regulation of receptor-type protein tyrosine phosphatase functions could potentially be conserved in mammals and may shed new light on the etiology of neurological defects in muscular dystrophies.  相似文献   

4.
Wills Z  Bateman J  Korey CA  Comer A  Van Vactor D 《Neuron》1999,22(2):301-312
Genetic analysis of growth cone guidance choice points in Drosophila identified neuronal receptor protein tyrosine phosphatases (RPTPs) as key determinants of axon pathfinding behavior. We now demonstrate that the Drosophila Abl tyrosine kinase functions in the intersegmental nerve b (ISNb) motor choice point pathway as an antagonist of the RPTP Dlar. The function of Abl in this pathway is dependent on an intact catalytic domain. We also show that the Abl phosphoprotein substrate Enabled (Ena) is required for choice point navigation. Both Abl and Ena proteins associate with the Dlar cytoplasmic domain and serve as substrates for Dlar in vitro, suggesting that they play a direct role in the Dlar pathway. These data suggest that Dlar, Abl, and Ena define a phosphorylation state-dependent switch that controls growth cone behavior by transmitting signals at the cell surface to the actin cytoskeleton.  相似文献   

5.
Previously we have shown that protein kinase C (PKC)-mediated reorganization of the actin cytoskeleton in smooth muscle cells is transmitted by the non-receptor tyrosine kinase, Src. Several authors have described how 12-O-tetradecanoylphorbol-13-acetate (TPA) stimulation of cells results in an increase of Src activity, but the mechanism of the PKC-mediated Src activation is unknown. Using PKC isozymes purified from Spodoptera frugiperda insect cells, we show here that PKC is not able to activate Src directly. Our data reveal that the PKC-dependent Src activation occurs via the activation of the protein tyrosine phosphatase (PTP) PTP alpha. PTP alpha becomes activated in vivo after TPA stimulation. Further, we show that PKC delta phosphorylates and activates only PTP alpha in vitro but not any other of the TPA-responsive PKC isozymes that are expressed in A7r5 rat aortic smooth muscle cells. To further substantiate our data, we show that cells lacking PKC delta have a markedly reduced PTP alpha and Src activity after 12-O-tetradecanoylphorbol-13-acetate stimulation. These data support a model in which the main mechanism of 12-O-tetradecanoylphorbol-13-acetate-induced Src activation is the direct phosphorylation and activation of PTP alpha by PKC delta, which in turn dephosphorylates and activates Src.  相似文献   

6.
We have previously reported a direct in vivo interaction between the activated insulin receptor and protein-tyrosine phosphatase-1B (PTP1B), which leads to an increase in PTP1B tyrosine phosphorylation. In order to determine if PTP1B is a substrate for the insulin receptor tyrosine kinase, the phosphorylation of the Cys 215 Ser, catalytically inactive mutant PTP1B (CS-PTP1B) was measured in the presence of partially purified and activated insulin receptor. In vitro, the insulin receptor tyrosine kinase catalyzed the tyrosine phosphorylation of PTP1B. 53% of the total cellular PTP1B became tyrosine phosphorylated in response to insulin in vivo. Tyrosine phosphorylation of PTP1B by the insulin receptor was absolutely dependent upon insulin-stimulated receptor autophosphorylation and required an intact kinase domain, containing insulin receptor tyrosines 1146, 1150 and 1151. Tyrosine phosphorylation of wild type PTP1B by the insulin receptor kinase increased phosphatase activity of the protein. Intermolecular transdephosphorylation was demonstrated both in vitro and in vivo, by dephosphorylation of phosphorylated CS-PTP1B by the active wild type enzyme either in a cell-free system or via expression of the wild type PTP1B into Hirc-M cell line, which constitutively overexpress the human insulin receptor and CS-PTP1B. These results suggest that PTP1B is a target protein for the insulin receptor tyrosine kinase and PTP1B can regulate its own phosphatase activity by maintaining the balance between its phosphorylated (the active form) and dephosphorylated (the inactive form) state.  相似文献   

7.
Signal attenuation from ligand-activated epidermal growth factor receptor (EGFR) is mediated in part by receptor endocytosis and trafficking to the lysosomal degradative compartment. Uncoupling the activated EGFR from endocytosis and degradation has emerged as a mechanism for oncogenic activation of the EGFR. The Abl nonreceptor tyrosine kinase is activated by ligand-stimulated EGFR, but the role of Abl in EGFR signaling has not been defined. Here we uncovered a novel role for the activated Abl kinase in the regulation of EGFR endocytosis. We show that activated Abl impairs EGFR internalization. Moreover, we show that activated Abl phosphorylates the EGFR primarily on tyrosine 1173, and that mutation of this site to phenylalanine restores ligand-dependent endocytosis of the EGFR in the presence of activated Abl. Furthermore, we show that activated Abl allows the ligand-activated EGFR to escape Cbl-dependent down-regulation by inhibiting the accumulation of Cbl at the plasma membrane in response to epidermal growth factor stimulation and disrupting the formation of the EGFR.Cbl complex without affecting Cbl protein stability. These findings reveal a novel role for Abl in promoting increased cell-surface expression of the EGFR and suggest that Abl/EGFR signaling may cooperate in human tumors.  相似文献   

8.
9.
Different Drosophila photoreceptors (R cells) connect to neurons in different optic lobe layers. R1-R6 axons project to the lamina; R7 and R8 axons project to separate layers of the medulla. We show a receptor tyrosine phosphatase, PTP69D, is required for lamina target specificity. In Ptp69D mutants, R1-R6 project through the lamina, terminating in the medulla. Genetic mosaics, transgene rescue, and immunolocalization indicate PTP69D functions in R1-R6 growth cones. PTP69D overexpression in R7 and R8 does not respecify their connections, suggesting PTP69D acts in combination with other factors to determine target specificity. Structure-function analysis indicates the extracellular fibronectin type III domains and intracellular phosphatase activity are required for targeting. We propose PTP69D promotes R1-R6 targeting in response to extracellular signals by dephosphorylating substrate(s) in R1-R6 growth cones.  相似文献   

10.
We describe the expression of a receptor-type protein tyrosine phosphatase PTP zeta (or RPTP beta) in human cutaneous melanomas as detected by means of immunohistochemistry. The expression of PTP zeta has been described to be restricted to the central nervous system. In developing mice brain high levels of PTP zeta have been detected indicating its developmental importance; PTP zeta is also expressed in glioblastoma and neuroblastoma. By the use of immunohistochemistry we detected PTP zeta in human primary and metastatic melanomas. The melanocytes of healthy skin remained negative. Due to the developmental origin of the melanocytes from neural crest, this represents a further example for transformed cells switching back to express molecules related to their ontogenetic history. These promising initial results have to be verified in larger scaled studies; the inclusion of nevi will be necessary to further elucidate the role of PTP zeta in melanocyte transformation and melanoma development.  相似文献   

11.
The oxidation and inactivation of protein tyrosine phosphatases is one mechanism by which reactive oxygen species influence tyrosine phosphorylation-dependent signaling events and exert their biological functions. In the present study, we determined the redox status of endogenous protein tyrosine phosphatases in HepG2 and A431 human cancer cells, in which reactive oxygen species are produced constitutively. We used mass spectrometry to assess the state of oxidation of the catalytic cysteine residue of endogenous PTP1B and show that this residue underwent both reversible and irreversible oxidation to high stoichiometry in response to intrinsic reactive oxygen species production. In addition, our data show that the oxidation of PTP1B is specific to the active site Cys, with the other Cys residues in the protein remaining in a reduced state. Treatment of these cells with diphenyleniodonium, an inhibitor of NADPH oxidases, decreased reactive oxygen species levels. This resulted in inhibition of protein tyrosine phosphatase oxidation, concomitant with decreased tyrosine phosphorylation of cellular proteins and inhibition of anchorage-independent cell growth. Therefore, our data also suggest that the high level of intrinsic reactive oxygen species may contribute to the transformed phenotype of HepG2 and A431 cells via constitutive inactivation of cellular protein tyrosine phosphatases.  相似文献   

12.
The Abl tyrosine kinase plays an important role in axonogenesis. Recent reports indicate that this role involves interaction with several different protein families, including LAR phosphatases, catenin/cadherin cell adhesion complexes, Trio family GEFs, and Ena/VASP family actin regulatory proteins. These findings suggest that Abl and its associated proteins may regulate cell adhesion and actin polymerization, thereby regulating growth cone motility during axonogenesis.  相似文献   

13.
Protein tyrosine phosphatase 1B (PTP1B) is a highly specific negative regulator of insulin receptor signaling in vivo. The determinants of PTP1B specificity for the insulin receptor versus other receptor tyrosine kinases are largely unknown. Here, we report a crystal structure at 2.3 A resolution of the catalytic domain of PTP1B (trapping mutant) in complex with the phosphorylated tyrosine kinase domain of the insulin receptor (IRK). The crystallographic asymmetric unit contains two PTP1B-IRK complexes that interact through an IRK dimer interface. Rather than binding to a phosphotyrosine in the IRK activation loop, PTP1B binds instead to the opposite side of the kinase domain, with the phosphorylated activation loops sequestered within the IRK dimer. The crystal structure provides evidence for a noncatalytic mode of interaction between PTP1B and IRK, which could be important for the selective recruitment of PTP1B to the insulin receptor.  相似文献   

14.
We demonstrate that Drosophila capulet (capt), a homolog of the adenylyl cyclase-associated protein that binds and regulates actin in yeast, associates with Abl in Drosophila cells, suggesting a functional relationship in vivo. We find a robust and specific genetic interaction between capt and Abl at the midline choice point where the growth cone repellent Slit functions to restrict axon crossing. Genetic interactions between capt and slit support a model where Capt and Abl collaborate as part of the repellent response. Further support for this model is provided by genetic interactions that both capt and Abl display with multiple members of the Roundabout receptor family. These studies identify Capulet as part of an emerging pathway linking guidance signals to regulation of cytoskeletal dynamics and suggest that the Abl pathway mediates signals downstream of multiple Roundabout receptors.  相似文献   

15.
Comment on: Veeriah S, Brennan C, Meng S, Singh B, Fagin JA, Solit DB, et al. The tyrosine phosphatase PTPRD is a tumor suppressor that is frequently inactivated and mutated in glioblastoma and other human cancers. Proc Natl Acad Sci USA 2009; 106:9435-40.  相似文献   

16.
The receptor-type protein tyrosine phosphatases (RPTPs) are integral membrane proteins composed of extracellular adhesion molecule-like domains, a single transmembrane domain, and a cytoplasmic domain. The cytoplasmic domain consists of tandem PTP domains, of which the D1 domain is enzymatically active. RPTPkappa is a member of the R2A/IIb subfamily of RPTPs along with RPTPmu, RPTPrho, and RPTPlambda. Here, we have determined the crystal structure of catalytically active, monomeric D1 domain of RPTPkappa at 1.9 A. Structural comparison with other PTP family members indicates an overall classical PTP architecture of twisted mixed beta-sheets flanked by alpha-helices, in which the catalytically important WPD loop is in an unhindered open conformation. Though the residues forming the dimeric interface in the RPTPmu structure are all conserved, they are not involved in the protein-protein interaction in RPTPkappa. The N-terminal beta-strand, formed by betax association with betay, is conserved only in RPTPs but not in cytosolic PTPs, and this feature is conserved in the RPTPkappa structure forming a beta-strand. Analytical ultracentrifugation studies show that the presence of reducing agents and higher ionic strength are necessary to maintain RPTPkappa as a monomer. In this family the crystal structure of catalytically active RPTPmu D1 was solved as a dimer, but the dimerization was proposed to be a consequence of crystallization since the protein was monomeric in solution. In agreement, we show that RPTPkappa is monomeric in solution and crystal structure.  相似文献   

17.
Wills Z  Marr L  Zinn K  Goodman CS  Van Vactor D 《Neuron》1999,22(2):291-299
The ability of neuronal growth cones to be guided by extracellular cues requires intimate communication between signal transduction systems and the dynamic actin-based cytoskeleton at the leading edge. Profilin, a small, actin-binding protein, has been proposed to be a regulator of the cell motility machinery at leading edge membranes. However, its requirement in the developing nervous system has been unknown. Profilin associates with members of the Enabled family of proteins, suggesting that Profilin might link Abl function to the cytoskeleton. Here, genetic analysis in Drosophila is used to demonstrate that mutations in Profilin (chickadee) and Abl (abl) display an identical growth cone arrest phenotype for axons of intersegmental nerve b (ISNb). Moreover, the phenotype of a double mutant suggests that these components function together to control axonal outgrowth.  相似文献   

18.
Molecular modeling of protein tyrosine phosphatase 1B (PTP 1B) inhibitors   总被引:3,自引:0,他引:3  
Binding modes of a series of aryloxymethylphosphonates and monoanionic biosteres of phosphate group from a series of benzylic alpha,alpha-diflluoro phosphate and its biosteres as protein tyrosine phosphatase 1B (PTP 1B) inhibitors have been identified by molecular modeling techniques. We have performed docking and molecular dynamics simulations of these inhibitors with PTP 1B enzyme. The initial conformation of the inhibitors for docking was obtained from simulated annealing technique. Solvent accessible surface area calculations suggested that active site of PTP 1B is highly hydrophobic. The results indicate that for aryloxymethylphosphonates, in addition to hydrogen bonding interactions, Tyr46, Arg47, Asp48, Val49, Glu115, Lys116, Lys120 amino acid residues of PTP 1B are responsible for governing inhibitor potency of the compounds. The sulfonate and tetrazole functional groups have been identified as effective monoanionic biosteres of phosphate group and biphenyl ring system due to its favorable interactions with Glu115, Lys116, Lys120 residues of PTP 1B found to be more suitable aromatic functionality than naphthalene ring system for benzylic alpha,alpha-diflluoro phosphate and its biosteres. The information generated from the present study should be useful in the design of more potent PTP 1B inhibitors as anti diabetic agents.  相似文献   

19.
The mitogen-activated protein kinases (MAPKs) are signaling molecules that become enzymatically activated through phosphorylation by diverse stimuli. Hematopoietic cytokines, growth factors, and stimulated lymphocyte antigen receptors may activate specific MAPKs by altering the balance of MAPK-activating protein kinases and the protein phosphatases that target their activation sites. Hematopoietic protein tyrosine phosphatase (HePTP) is a hematopoiesis-specific cytoplasmic protein tyrosine phosphatase whose expression is induced by mitogenic stimuli. To investigate the role of HePTP in hematopoietic development, we constructed mice deficient in this phosphatase using the technique of homologous recombination. Primary lymphocytes from HePTP(-/-) mice show enhanced activation of extracellular stimulus-regulated kinase (ERK) after both phorbol myristate acetate (PMA) and anti-CD3-mediated T-cell receptor (TCR) stimulation, suggesting a true physiological relationship between these two molecules. Activation of MEK, the physiological activator of ERK, by anti-CD3 or PMA is not affected by HePTP deletion. The distribution of hematopoietic lineages in bone marrow and peripheral blood samples and the in vitro proliferative capacity of bone marrow progenitors from HePTP deletion mice do not deviate from those of matched littermate controls. Similarly, lymphocyte activation and development are indistinguishable in HePTP(-/-) mice and controls. We conclude that HePTP is a physiological regulator of ERK on the basis of these studies and hypothesize that its deletion is well compensated for in the developing mouse through reduction of ERK targets or enhancement of physiologically opposed signaling pathways.  相似文献   

20.
Protein tyrosine phosphatase inactivators are of interest as research tools and as therapeutic agents. In this study, the effect of sulfone analogue of naphthoquinone on the activities of PTP1B and other PTPs was examined. The results indicated that this compound selectively and irreversibly inactivated the PTP1B with the dissociation constant Ki of 3.5 microM and the inactivation rate constant kinact of 2.2 x 10(-2) sec-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号