首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The centriole pair in animals shows duplication and structural maturation at specific cell cycle points. In G1, a cell has two centrioles. One of the centrioles is mature and was generated at least two cell cycles ago. The other centriole was produced in the previous cell cycle and is immature. Both centrioles then nucleate one procentriole each which subsequently elongate to full-length centrioles, usually in S or G2 phase. However, the point in the cell cycle at which maturation of the immature centriole occurs is open to question. Furthermore, the molecular events underlying this process are entirely unknown. Here, using monoclonal and polyclonal antibody approaches, we describe for the first time a molecular marker which localizes exclusively to one centriole of the centriolar pair and provides biochemical evidence that the two centrioles are different. Moreover, this 96-kD protein, which we name Cenexin (derived from the Latin, senex for "old man," and Cenexin for centriole) defines very precisely the mature centriole of a pair and is acquired by the immature centriole at the G2/M transition in prophase. Thus the acquisition of Cenexin marks the functional maturation of the centriole and may indicate a change in centriolar potential such as its ability to act as a basal body for axoneme development or as a congregating site for microtubule-organizing material.  相似文献   

3.
中心体蛋白Cenexin是成熟中心粒的唯一标志分子。为阐明中心粒在大鼠精子发生过程中的成熟以及功能,我们首先通过RT-PCR技术从大鼠睾丸组织中扩增出了Cenexin cDNA片段,原核表达重组蛋白后,用其免疫小鼠制备了高滴度的抗Cenexin的多克隆抗体,然后利用免疫荧光染色、Western Blot和半定量RT-PCR方法,研究了大鼠精子发生过程中Cenexin蛋白和基因的表达特征。结果显示Cenexin mRNA水平在精原细胞和精母细胞中较高,随后表达水平下降,而蛋白质分子在精原细胞到精子细胞中都定位于细胞的一个中心粒上,表示有成熟中心粒的存在,在长形精子细胞中该蛋白位于鞭毛的基体部。附睾的绝大多数成熟精子中Cenexin免疫染色消失。中心体蛋白Cenexin在精子变态期的表达变化可能与精子鞭毛形成的起始有关。  相似文献   

4.
中心体蛋白Cenexin是成熟中心粒的唯一标志分子。为阐明中心粒在大鼠精子发生中的成熟以及功能,我们首先通过RT-PCR技术从大鼠睾丸组织中扩增出了Cenexin cDNA片段,原核表达重组蛋白后,用其免疫小鼠制备了高滴度的抗Cenexin的多克隆抗体,然后利用免疫荧光染色、Western Blot和半定量RT-PCR方法,研究了大鼠精子发生过程中Cenexin蛋白和基因的表达特征。结果显示Cenexin mRNA水平在精原细胞和精母细胞中较高,随后表达水平下降,而蛋白质分子在精原细胞到精子细胞中都定位于细胞的一个中心粒上,表示有成熟中心粒的存在,在长形精子细胞中该蛋白位于鞭毛的基体部。附睾的绝大多数成熟精子中Cenexin免疫染色消失。中心体蛋白Cenexin在精子变态期的表达变化可能与精子鞭毛形成的起始有关。  相似文献   

5.
6.
7.
Using post-vasectomy monoclonal antibody we recently identified a testis specific sperm auto-antigen called TSA70 which is post-meiotically expressed and plays a role in sperm motility and capacitation-acrosome reaction. In the present study, we report its cytoskeletal nature based on its resistance to various high ionic salt solutions. TSA70 is developmentally regulated and appears postpubertally. The two protein spots identified by 2D WB namely TSA1-pI=5.821, MW=77.050 and TSA3-pI=6.173, MW=75.519 showed sequence homology to Cenexin/odf2 indicating that two are isoforms of the same protein. The immunoreactivity of TSA70 with anti-Cenexin antibody substantiates its homology with Cenexin/odf2. In silico analysis revealed the presence of two leucine zippers in TSA70 and also predicted potential phosphorylation sites at serine, threonine, and tyrosine residues. The phosphorylated status of TSA70 was further confirmed by immunoblot analysis. The differential cellular expression suggests that TSA70 is a novel member of Cenexin/odf2 family that exhibits functional divergence.  相似文献   

8.
Outer dense fibers (ODF) are specific subcellular components of the sperm flagellum. The functions of ODF have not yet been clearly elucidated. We have investigated the protein composition of purified ODF from bovine spermatozoa and found that one of the most abundant proteins is a 30-32-kDa polypeptide. This protein was analyzed by sequencing peptides derived following limited proteolysis. Peptide sequences were found to match VDAC2 and VDAC3. VDACs (voltage-dependent, anion-selective channels) or eukaryotic porins are a group of proteins first identified in the mitochondrial outer membrane that are able to form hydrophilic pore structures in membranes. In mammals, three VDAC isoforms (VDAC1, -2, -3) have been identified by cDNA cloning and sequencing. Antibodies against synthetic peptides specific for the three mammal VDAC isoforms were generated in rabbits. Their specificity was demonstrated by immunoblotting using recombinant VDAC1, -2, and -3. In protein extracts of bovine spermatozoa, VDAC1, -2, and -3 were detected by specific antibodies, while only VDAC2 and -3 were found as solubilized proteins derived from purified bovine ODFs. Immunofluorescence microscopy of spermatozoa revealed that anti-VDAC2 and anti-VDAC3 antibodies clearly bound to the sperm flagellum, in particular to the ODF. Transmission electron immunomicroscopy supported the finding that VDAC2 protein is abundant in the ODF. Since the ODF does not have any known membranous structure, it is tempting to speculate that VDAC2 and VDAC3 might have an alternative structural organization and different functions in ODF than in mitochondria.  相似文献   

9.
Serial ultrathin sections were used to study the formation of the primary cilium and the centriolar apparatus, basal body, and centriole in the neuroepithelial primordial cell of the embryonic nervous system in the mouse. At the end of mitosis, the centrioles seem to migrate toward the ventricular process of the neuroepithelial cell, near the ventricular surface. One of these centrioles, the nearest to the ventricular surface, begins to mature to form a basal body, since its tip is capped by a vesicle probably originating in the cytoplasm. This vesicle fuses with the plasmalemma and the cilium growth by the centrifugal extension of the 9 sets of microtubule doublets. These 9 sets invade the thick base of the cilium which is initially capped by a ball-shaped tip with the appearance of a mushroom cilium. The secondary extension of 7, then 5, and finally 2 sets of microtubule doublets contribute to form the tip of the mature cilium, which is associated with a mature centriolar apparatus formed by a basal body and a centriole. Centriologenesis occurs before mitosis and is concomitant with the progressive resorption of the cilium. The daughter centriole, or procentriole, begins to take form near the tips of fibrils that extend perpendicularly and at a short distance from the wall of the parent centriole. Osmiophilic material accumulates around these fibrils, and gives rise to the microtubules of the mature daughter centriole. These centrioles formed by a centriolar process are further engaged in mitosis, after the total resorption of the cilium. This pattern of development suggests that in the primordial cells of the embryonic nervous system, centriologenesis and ciliogenesis are 2 independent phenomena.  相似文献   

10.
Centrioles in the cell cycle. I. Epithelial cells   总被引:20,自引:14,他引:6       下载免费PDF全文
A study was made of the structure of the centrosome in the cell cycle in a nonsynchronous culture of pig kidney embryo (PE) cells. In the spindle pole of the metaphase cell there are two mutually perpendicular centrioles (mother and daughter) which differ in their ultrastructure. An electron-dense halo, which surrounds only the mother centriole and is the site where spindle microtubules converge, disappears at the end of telophase. In metaphase and anaphase, the mother centriole is situated perpendicular to the spindle axis. At the beginning of the G1 period, pericentriolar satellites are formed on the mother centriole with microtubules attached to them; the two centrioles diverge. The structures of the two centrioles differ throughout interphase; the mother centriole has appendages, the daughter does not. Replication of the centrioles occurs approximately in the middle of the S period. The structure of the procentrioles differs sharply from that of the mature centriole. Elongation of procentrioles is completed in prometaphase, and their structure undergoes a number of successive changes. In the G2 period, pericentriolar satellites disappear and some time later a fibrillar halo is formed on both mother centrioles, i.e., spindle poles begin to form. In the cells that have left the mitotic cycle (G0 period), replication of centrioles does not take place; in many cells, a cilium is formed on the mother centriole. In a small number of cells a cilium is formed in the S and G2 periods, but unlike the cilium in the G0 period it does not reach the surface of the cell. In all cases, it locates on the centriole with appendages. At the beginning of the G1 period, during the G2 period, and in nonciliated cells in the G0 period, one of the centrioles is situated perpendicular to the substrate. On the whole, it takes a mature centriole a cycle and a half to form in PE cells.  相似文献   

11.
ODF2 (outer dense fiber 2) was first described as the main protein component of the sperm tail cytoskeleton, the outer dense fibers, but was shown recently to be a component of the centrosomal scaffold in chicken. In mouse two related ODF2 cDNA clones were isolated which have been suggested to be most likely the result of alternative splicing. We show here the exon/intron organisation of mouse ODF2 and demonstrate that alternative splicing results in related cDNA sequences and most likely explains, at least partially, the highly complex protein pattern detected on Western blots. ODF2 was mapped to rat chromosome 3 and more specifically by FISH analysis at bands 3q11-->3q12. In addition, we demonstrate that ODF2 is indeed a component of the centrosome and the mitotic spindle poles in mammals.  相似文献   

12.
Defects in centrosome and cilium function are associated with phenotypically related syndromes called ciliopathies. Cby1, the mammalian orthologue of the Drosophila Chibby protein, localizes to mature centrioles, is important for ciliogenesis in multiciliated airway epithelia in mice, and antagonizes canonical Wnt signaling via direct regulation of β-catenin. We report that deletion of the mouse Cby1 gene results in cystic kidneys, a phenotype common to ciliopathies, and that Cby1 facilitates the formation of primary cilia and ciliary recruitment of the Joubert syndrome protein Arl13b. Localization of Cby1 to the distal end of mature centrioles depends on the centriole protein Ofd1. Superresolution microscopy using both three-dimensional SIM and STED reveals that Cby1 localizes to an ∼250-nm ring at the distal end of the mature centriole, in close proximity to Ofd1 and Ahi1, a component of the transition zone between centriole and cilium. The amount of centriole-localized Ahi1, but not Ofd1, is reduced in Cby1−/− cells. This suggests that Cby1 is required for efficient recruitment of Ahi1, providing a possible molecular mechanism for the ciliogenesis defect in Cby1−/− cells.  相似文献   

13.
Ciliogenesis is regulated by context-dependent cellular cues, including some transduced through appendage-like structures on ciliary basal bodies called transition fibers and basal feet. However, the molecular basis for this regulation is not fully understood. The Odf2 gene product, ODF2/cenexin, is essential for both ciliogenesis and the formation of the distal and subdistal appendages on centrioles, which become basal bodies. We examined the effects of Odf2 deletion constructs on ciliogenesis in Odf2-knockout F9 cells. Electron microscopy revealed that ciliogenesis and transition fiber formation required the ODF2/cenexin fragment containing amino acids (aa) 188–806, whereas basal foot formation required aa 1–59 and 188–806. These sequences also formed distal and subdistal appendages, respectively, indicating that the centriole appendages are molecularly analogous to those on basal bodies. We used the differential formation of appendages by Odf2 deletion constructs to study the incorporation and function of molecules associated with each appendage type. We found that transition fibers and distal appendages were required for ciliogenesis and subdistal appendages stabilized the centrosomal microtubules.  相似文献   

14.
Centrosomes nucleate microtubules and serve as poles of the mitotic spindle. Centrioles are a core component of centrosomes and duplicate once per cell cycle. We previously identified epsilon-tubulin as a new member of the tubulin superfamily that localizes asymmetrically to the two centrosomes after duplication. We show that recruitment of epsilon-tubulin to the new centrosome can only occur after exit from S phase and that epsilon-tubulin is associated with the sub-distal appendages of mature centrioles. Xenopus laevis epsilon-tubulin was cloned and shown to be similar to human epsilon-tubulin in both sequence and localization. Depletion of epsilon-tubulin from Xenopus egg extracts blocks centriole duplication in S phase and formation of organized centrosome-independent microtubule asters in M phase. We conclude that epsilon-tubulin is a component of the sub-distal appendages of the centriole, explaining its asymmetric localization to old and new centrosomes, and that epsilon-tubulin is required for centriole duplication and organization of the pericentriolar material.  相似文献   

15.
The centrosome is the major microtubule organizing center in most animal cells. This cytoplasmic organelle consists of two components : a mature centriole (or a pair of centrioles) and a mass of pericentriolar material (PCM). The PCM has been described as either a cloud of material that encases the entire centriole or as a cluster of proteins divided into two subsets, one that adheres to the lateral surface of the centriole and another that extends outward from this region as a cloud of material. In contrast to these protein distribution patterns, we demonstrated in a previous study that a subset of proteins present within the PCM is integrated together to form a tube (PCM tube) with an open and closed end that is duplicated in concert with centrosome duplication. The present study was undertaken to determine if this tubular conformation represents proteins that are confined to the surface of the centriole or if it represents a subset of proteins within the cloud of material that extends outward from the centriole. We document that : (1) the PCM tube represents a portion of the PCM directly associated with the centriole; (2) the PCM tube has a specific and reproducible relationship to the polar structure of the centriole; (3) the tube is a site of cytoplasmic microtubule organization, and has a structure that influences the initial pattern of microtubule assembly within the juxta-centriolar region; and (4) the PCM tube has a structural relationship with respect to the centriole, which allows the simultaneous expression of centriole- and PCM-based functions (e.g., ciliogenesis and cytoplasmic microtubule organization). Based on these findings, we propose a new model of the PCM at the centriole. This model highlights the role played by the proximal end of the centriole in the nucleation and organization of centriole-associated PCM, and indicates that the centrosome has an overall polarity in the region of the centriole.  相似文献   

16.
R W Tucker  C D Scher  C D Stiles 《Cell》1979,18(4):1065-1072
BALB/c-3T3 cells which are growth-arrested by high cell density or low serum have ciliated, unduplicated centrioles. Stimulation of these quiescent cells by serum is associated with a rapid (within 1–2 hr) deciliation of the centriole, followed by reciliation within 6–10 hr. This transient deciliation of the centriole is induced by the platelet-derived growth factor (PDGF) component of serum. The cells treated with PDGF became competent to replicate their DNA; most PDGF treated cells, however, did not progress from Go toward S phase unless they were incubated with the platelet-poor plasma component of serum. Addition of CaCl2 or Fibroblast Growth Factor to the media mimicked PDGF by producing both centriole deciliation and competence to replicate DNA. In fact, over a range of concentrations of each of these factors, only doses which produced centriole deciliation were capable of producing competence for DNA synthesis. Plasma alone or factors such as Multiplication Stimulating Activity produced neither centriole deciliation nor competence; these agents were, however, required for the optimum progression of competent cells into DNA synthesis. In contrast, infection with SV40 induced host cell DNA synthesis without an initial transient deciliation of the centriole. Thus while growth factors may have to induce centriole deciliation for 3T3 cells to synthesize DNA, abortive transformation by SV40 overrides this requirement.  相似文献   

17.
Testes of jellyfish Phialidium gregarium were fixed in 2 per cent OsO4 in Veronal-acetate buffer at pH 7.4. Thin sections showed that in young spermatids the spindle fibers of the last maturation division are attached to satellites of the filament-forming centriole. In more mature spermatids this attachment is not observed. During the developmental phase, nine satellites can be observed emanating from the interspaces between the nine tubular triplets of this centriole. A circular region on each of the enlarged distal ends of the satellites attaches them to the cell membrane. The satellites apparently provide a firm anchor for the axial filament. Each of the epithelial cells covering the testis produces a single long flagellum. On the filament-forming centriole often a satellite can be observed to which tubules are attached. These tubules are 180 A in diameter and probably represent remnants of spindle fibers. It is suggested that the distal centriole has the ability to form several satellites or appendages at appropriate times during the cell cycle. These satellites are distinct from the daughter centrioles in that they are supportive structures: in certain phases of cell life, spindle fibers may attach to them, while in other instances the distal centriole and the flagellum it is forming are anchored by them.  相似文献   

18.
BACKGROUND: The centrosome is composed of a centriole pair and pericentriolar material (PCM). By marking the site of PCM assembly, the centrioles define the number of centrosomes present in the cell. The PCM, in turn, is responsible for the microtubule (MT) nucleation activity of centrosomes. Therefore, in order to assemble a functional bipolar mitotic spindle, a cell needs to control both centriole duplication and PCM recruitment. To date, however, the molecular mechanisms that govern these two processes still remain poorly understood. RESULTS: Here we show that SPD-2 is a novel component of the C. elegans centrosome. SPD-2 localizes to the centriole throughout the cell cycle and accumulates on the PCM during mitosis. We show that SPD-2 requires SPD-5 for its accumulation on the PCM and that in the absence of SPD-2, centrosome assembly fails. We further show that centriole duplication is also defective in spd-2(RNAi) embryos, but not in spd-5(RNAi) embryos, where PCM recruitment is efficiently blocked. CONCLUSIONS: Taken together, our results suggest that SPD-2 may link PCM recruitment and centriole duplication in C. elegans. SPD-2 shares homology with a human centrosome protein, suggesting that this key component of the C. elegans centrosome is evolutionarily conserved.  相似文献   

19.
Osteoclast differentiation factor (ODF), a recently identified cytokine of the TNF family, is expressed as a membrane-associated protein in osteoblasts and stromal cells. ODF stimulates the differentiation of osteoclast precursors into osteoclasts in the presence of M-CSF. Here we investigated the effects of LPS on the gene expression of ODF in mouse osteoblasts and an osteoblast cell line and found that LPS increased the ODF mRNA level. A specific inhibitor of extracellular signal-regulated kinase or protein kinase C inhibited this up-regulation, indicating that extracellular signal-regulated kinase and protein kinase C activation was involved. A protein synthesis inhibitor, cycloheximide, rather enhanced the LPS-mediated increase of ODF mRNA, and both a neutralizing Ab of TNF-alpha and a specific inhibitor of PGE synthesis failed to block the ODF mRNA increase by native LPS. Thus, LPS directly induced ODF mRNA. Mouse osteoblasts and an osteoblast cell line constitutively expressed Toll-like receptor (TLR) 2 and 4, which are known as putative LPS receptors. ODF mRNA increases in response to synthetic lipid A were defective in primary osteoblasts from C3H/HeJ mice that contain a nonfunctional mutation in the TLR4 gene, suggesting that TLR4 plays an essential role in the process. Altogether, our results indicate that ODF gene expression is directly increased in osteoblasts by LPS treatment via TLR, and this pathway may play an important role in the pathogenesis of LPS-mediated bone disorders, such as periodontitis.  相似文献   

20.
Dix CI  Raff JW 《Current biology : CB》2007,17(20):1759-1764
In C. elegans, genome-wide screens have identified just five essential centriole-duplication factors: SPD-2, ZYG-1, SAS-5, SAS-6, and SAS-4 [1-8]. These proteins are widely believed to comprise a conserved core duplication module [3, 9-14]. In worm embryos, SPD-2 is the most upstream component of this module, and it is also essential for pericentriolar material (PCM) recruitment to the centrioles [1, 4, 15, 16]. Here, we show that Drosophila Spd-2 (DSpd-2) is a component of both the centrioles and the PCM and has a role in recruiting PCM to the centrioles. DSpd-2 appears not, however, to be essential for centriole duplication in somatic cells. Moreover, PCM recruitment in DSpd-2 mutant somatic cells is only partially compromised, and mitosis appears unperturbed. In contrast, DSpd-2 is essential for proper PCM recruitment to the fertilizing sperm centriole, and hence for microtubule nucleation and pronuclear fusion. DSpd-2 therefore appears to have a particularly important role in recruiting PCM to the sperm centriole. We speculate that the SPD-2 family of proteins might only be absolutely essential for the recruitment of centriole duplication factors and PCM to the centriole(s) that enter the egg with the fertilizing sperm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号