首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The widespread distribution of lentiviruses among African primates, and the lack of severe pathogenesis in many of these natural reservoirs, are taken as evidence for long-term co-evolution between the simian immunodeficiency viruses (SIVs) and their primate hosts. Evidence for positive selection acting on antiviral restriction factors is consistent with virus-host interactions spanning millions of years of primate evolution. However, many restriction mechanisms are not virus-specific, and selection cannot be unambiguously attributed to any one type of virus. We hypothesized that the restriction factor TRIM5, because of its unique specificity for retrovirus capsids, should accumulate adaptive changes in a virus-specific fashion, and therefore, that phylogenetic reconstruction of TRIM5 evolution in African primates should reveal selection by lentiviruses closely related to modern SIVs. We analyzed complete TRIM5 coding sequences of 22 Old World primates and identified a tightly-spaced cluster of branch-specific adaptions appearing in the Cercopithecinae lineage after divergence from the Colobinae around 16 million years ago. Functional assays of both extant TRIM5 orthologs and reconstructed ancestral TRIM5 proteins revealed that this cluster of adaptations in TRIM5 specifically resulted in the ability to restrict Cercopithecine lentiviruses, but had no effect (positive or negative) on restriction of other retroviruses, including lentiviruses of non-Cercopithecine primates. The correlation between lineage-specific adaptations and ability to restrict viruses endemic to the same hosts supports the hypothesis that lentiviruses closely related to modern SIVs were present in Africa and infecting the ancestors of Cercopithecine primates as far back as 16 million years ago, and provides insight into the evolution of TRIM5 specificity.  相似文献   

2.
The antiretroviral protein TRIM5α is known to have evolved different restriction capacities against various retroviruses, driven by positive Darwinian selection. However, how these different specificities have evolved in the primate lineages is not fully understood. Here we used ancestral protein resurrection to estimate the evolution of antiviral restriction specificities of TRIM5α on the primate lineage leading to humans. We used TRIM5α coding sequences from 24 primates for the reconstruction of ancestral TRIM5α sequences using maximum-likelihood and Bayesian approaches. Ancestral sequences were transduced into HeLa and CRFK cells. Stable cell lines were generated and used to test restriction of a panel of extant retroviruses (human immunodeficiency virus type 1 [HIV-1] and HIV-2, simian immunodeficiency virus [SIV] variants SIVmac and SIVagm, and murine leukemia virus [MLV] variants N-MLV and B-MLV). The resurrected TRIM5α variant from the common ancestor of Old World primates (Old World monkeys and apes, ~25 million years before present) was effective against present day HIV-1. In contrast to the HIV-1 restriction pattern, we show that the restriction efficacy against other retroviruses, such as a murine oncoretrovirus (N-MLV), is higher for more recent resurrected hominoid variants. Ancestral TRIM5α variants have generally limited efficacy against HIV-2, SIVagm, and SIVmac. Our study sheds new light on the evolution of the intrinsic antiviral defense machinery and illustrates the utility of functional evolutionary reconstruction for characterizing recently emerged protein differences.  相似文献   

3.
Mammalian cells express several factors that inhibit lentiviral infection and that have been under strong selective pressure. One of these factors, TRIM5, targets the capsid protein of incoming retrovirus particles and inhibits subsequent steps of the replication cycle. By substituting human immunodeficiency virus type 1 capsid, we were able to show that a set of divergent primate lentivirus capsids was generally not susceptible to restriction by TRIM5 proteins from higher primates. TRIM5alpha proteins from other primates exhibited distinct restriction specificities for primate lentivirus capsids. Finally, we identified novel primate lentiviral capsids that are targeted by TRIMCyp proteins.  相似文献   

4.
Han K  Lou DI  Sawyer SL 《PLoS genetics》2011,7(12):e1002388
Tripartite Motif (TRIM) ubiquitin ligases act in the innate immune response against viruses. One of the best characterized members of this family, TRIM5α, serves as a potent retroviral restriction factor with activity against HIV. Here, we characterize what are likely to be the youngest TRIM genes in the human genome. For instance, we have identified 11 TRIM genes that are specific to humans and African apes (chimpanzees, bonobos, and gorillas) and another 7 that are human-specific. Many of these young genes have never been described, and their identification brings the total number of known human TRIM genes to approximately 100. These genes were acquired through segmental duplications, most of which originated from a single locus on chromosome 11. Another polymorphic duplication of this locus has resulted in these genes being copy number variable within the human population, with a Han Chinese woman identified as having 12 additional copies of these TRIM genes compared to other individuals screened in this study. Recently, this locus was annotated as one of 34 "hotspot" regions that are also copy number variable in the genomes of chimpanzees and rhesus macaques. Most of the young TRIM genes originating from this locus are expressed, spliced, and contain signatures of positive natural selection in regions known to determine virus recognition in TRIM5α. However, we find that they do not restrict the same retroviruses as TRIM5α, consistent with the high degree of divergence observed in the regions that control target specificity. We propose that this recombinationally volatile locus serves as a reservoir from which new TRIM genes arise through segmental duplication, allowing primates to continually acquire new antiviral genes that can be selected to target new and evolving pathogens.  相似文献   

5.
Tripartite motif (TRIM) proteins are composed of RING, B-box 2, and coiled coil domains. Some TRIM proteins, such as TRIM5alpha, also possess a carboxy-terminal B30.2(SPRY) domain and localize to cytoplasmic bodies. TRIM5alpha has recently been shown to mediate innate intracellular resistance to retroviruses, an activity dependent on the integrity of the B30.2 domain, in particular primate species. An examination of the sequences of several TRIM proteins related to TRIM5 revealed the existence of four variable regions (v1, v2, v3, and v4) in the B30.2 domain. Species-specific variation in TRIM5alpha was analyzed by amplifying, cloning, and sequencing nonhuman primate TRIM5 orthologs. Lineage-specific expansion and sequential duplication occurred in the TRIM5alpha B30.2 v1 region in Old World primates and in v3 in New World monkeys. We observed substitution patterns indicative of selection bordering these particular B30.2 domain variable elements. These results suggest that occasional, complex changes were incorporated into the TRIM5alpha B30.2 domain at discrete time points during the evolution of primates. Some of these time points correspond to periods during which primates were exposed to retroviral infections, based on the appearance of particular endogenous retroviruses in primate genomes. The results are consistent with a role for TRIM5alpha in innate immunity against retroviruses.  相似文献   

6.
The B30.2/SPRY domain is present in many proteins, including various members of the tripartite motif (TRIM) protein family such as TRIM5α, which mediates innate intracellular resistance to retroviruses in several primate species. This resistance is dependent on the integrity of the B30.2 domain that evolves rapidly in primates and exhibits species-specific anti-viral activity. TRIM22 is another positively selected TRIM gene. Particularly, the B30.2 domain shows rapid evolution in the primate lineage and recently published data indicate an anti-viral function of TRIM22. We show here that human and rhesus TRIM22 localise to different subcellular compartments and that this difference can be assigned to the positively selected B30.2 domain. Moreover, we could demonstrate that amino acid changes in two variable loops (VL1 and VL3) are responsible for the different subcellular localisations.  相似文献   

7.
8.
Tripartite motif proteins (TRIM) constitute a large family of proteins containing a RING-Bbox-Coiled Coil motif followed by different C-terminal domains. Involved in ubiquitination, TRIM proteins participate in many cellular processes including antiviral immunity. The TRIM family is ancient and has been greatly diversified in vertebrates and especially in fish. We analyzed the complete sets of trim genes of the large zebrafish genome and of the compact pufferfish genome. Both contain three large multigene subsets--adding the hsl5/trim35-like genes (hltr) to the ftr and the btr that we previously described--all containing a B30.2 domain that evolved under positive selection. These subsets are conserved among teleosts. By contrast, most human trim genes of the other classes have only one or two orthologues in fish. Loss or gain of C-terminal exons generated proteins with different domain organizations; either by the deletion of the ancestral domain or, remarkably, by the acquisition of a new C-terminal domain. Our survey of fish trim genes in fish identifies subsets with different evolutionary dynamics. trims encoding RBCC-B30.2 proteins show the same evolutionary trends in fish and tetrapods: they evolve fast, often under positive selection, and they duplicate to create multigenic families. We could identify new combinations of domains, which epitomize how new trim classes appear by domain insertion or exon shuffling. Notably, we found that a cyclophilin-A domain replaces the B30.2 domain of a zebrafish fintrim gene, as reported in the macaque and owl monkey antiretroviral TRIM5α. Finally, trim genes encoding RBCC-B30.2 proteins are preferentially located in the vicinity of MHC or MHC gene paralogues, which suggests that such trim genes may have been part of the ancestral MHC.  相似文献   

9.
In 2004, the first report of TRIM5α as a cellular antiretroviral factor triggered intense interest among virologists, particularly because some primate orthologs of TRIM5α have activity against HIV. Since that time, a complex and eventful evolutionary history of the TRIM5 locus has emerged. A review of the TRIM5 literature constitutes a veritable compendium of evolutionary phenomena, including elevated rates of nonsynonymous substitution, divergence in subdomains due to short insertions and deletions, expansions and contractions in gene copy number, pseudogenization, balanced polymorphism, trans-species polymorphism, convergent evolution, and the acquisition of new domains by exon capture. Unlike most genes, whose history is dominated by long periods of purifying selection interspersed with rare instances of genetic innovation, analysis of restriction factor loci is likely to be complicated by the unpredictable and more-or-less constant influence of positive selection. In this regard, the molecular evolution and population genetics of restriction factor loci most closely resemble patterns that have been documented for immunity genes, such as class I and II MHC genes, whose products interact directly with microbial targets. While the antiretroviral activity encoded by TRIM5 provides plausible mechanistic hypotheses for these unusual evolutionary observations, evolutionary analyses have reciprocated by providing significant insights into the structure and function of the TRIM5α protein. Many of the lessons learned from TRIM5 should be applicable to the study of other restriction factor loci, and molecular evolutionary analysis could facilitate the discovery of new antiviral factors, particularly among the many TRIM genes whose functions remain as yet unidentified.  相似文献   

10.
Unannotated mammalian genome databases (dog, cow, opossum) were searched for candidate connexin genes, using sequences from annotated genomes (man, mouse). All 18 'multi-species' connexin genes, i.e., orthologs of connexin26 , 29/31.3 (duplicated in opossum), 30, 30.2/31.9, 30.3, 31, 31.1, 32, 36, 37, 39/40.1, 40, 43, 45, 44/46, 47, 50, and 57/62 , were found in dog, cow and opossum. Connexin25 and 58 have been considered specific for man, but evident orthologs of connexin25 were found in dog, cow and opossum, and orthologs of connexin58 were found in dog and cow. Moreover, a connexin43 -like sequence (approx. 80% identical to connexin43 ) was found in man, chimpanzee, dog and cow. In the three former species, the sequences were located on the X chromosome. In man, chimpanzee and cow, there were stop codons in all reading frames; these sequences are therefore judged as pseudogenes, called here Cx43pX . In the dog, the sequence contained an open reading frame for a protein of 35.7 kDa (connexin35.7). We suggest that these sequences are orthologs of connexin33 , previously considered as a rodent-specific connexin gene. Thus, connexin25 , 33 and 58 are not species-specific genes. However, the opossum may possess a candidate, connexin39.2 , without obvious orthologs in other mammals. Furthermore, pseudogenes of primate connexin31.3 and opossum connexin35 (one of the two orthologs of primate connexin31.3) were detected. These results suggest that the structure of the mammalian connexin gene family should be revised, especially with regard to the so-called 'species-specific' connexins .  相似文献   

11.
Cis-regulatory elements play important roles in tissue-specific gene expression and in the evolution of various phenotypes, and mutations in promoters and enhancers may be responsible for adaptations of species to environments. TRIM72 is a highly conserved protein that is involved in energy metabolism. Its expression in the heart varies considerably in primates, with high levels of expression in Old World monkeys and near absence in hominids. Here, we combine phylogenetic hypothesis testing and experimentation to demonstrate that mutations in promoter are responsible for the differences among primate species in the heart-specific expression of TRIM72. Maximum likelihood estimates of lineage-specific substitution rates under local-clock models show that relative to the evolutionary rate of introns, the rate of promoter was accelerated by 78% in the common ancestor of Old World monkeys, suggesting a role for positive selection in the evolution of the TRIM72 promoter, possibly driven by selective pressure due to changes in cardiac physiology after species divergence. We demonstrate that mutations in the TRIM72 promoter account for the differential myocardial TRIM72 expression of the human and the rhesus macaque. Furthermore, changes in TRIM72 expression alter the expression of genes involved in oxidative phosphorylation, which in turn affects mitochondrial respiration and cardiac energy capacity. On a broader timescale, phylogenetic regression analyses of data from 29 mammalian species show that mammals with high cardiac expression of TRIM72 have high heart rate, suggesting that the expression changes of TRIM72 may be related to differences in the heart physiology of those species.  相似文献   

12.
Schaller T  Hué S  Towers GJ 《Journal of virology》2007,81(21):11713-11721
The recent identification of antiretroviral tripartite motif-bearing restriction factors that protect against retroviral infection has revealed a novel branch of innate immunity. The factors target the retroviral capsid and inhibit infectivity soon after the capsid has entered the cytoplasm by an incompletely characterized mechanism. Restriction is species specific. For example, TRIM5alpha from Old World monkeys, but not humans, restricts human immunodeficiency virus type 1 infection. Here, we identify an antiviral TRIM5 molecule in rabbits that is closely related to antiviral TRIM5 of both primates and cattle. We demonstrate that the rabbit TRIM5 protein is active against divergent retroviruses and leads to a strong block to viral DNA synthesis and infectivity. Furthermore, we show that antiviral activity is directed against the viral capsid and that human TRIM5 proteins are dominant negative to restriction in rabbit cells. We propose that the sequence and restriction characteristics conserved between restriction factors from primates, cattle, and rabbits indicate that these factors have evolved from a common ancestor with antiretroviral properties.  相似文献   

13.
Vomeronasal receptors are the major receptors for pheromones in vertebrates, and five putative type 1 vomeronasal receptors (V1RL) have been identified in humans. The evolution of the V1RL1 gene in non-human primates, and patterns of selection on V1RL genes, were investigated. The presumed ortholog of V1RL1 was sequenced from 13 species of nonhuman primate, and in eight of these species V1RL1 was a pseudogene. Phylogenetic reconstructions reveal that V1RL1 pseudogene formation occurred independently in multiple primate lineages. Using maximum likelihood estimates of dN/dS ratios in PAML, we show that V1RL genes have evolved under neutral evolution in lineages in which they became a pseudogene. In contrast, among lineages in which V1RL genes contain an open reading frame, the majority of sites are under purifying selection and a minority are under significant positive selection. These results provide an interesting case where all three categories of selection can be teased apart in the same data set using maximum likelihood methods. The finding of positive selection on V1RL genes during primate evolution provides indirect support for the hypothesis that V1RL genes have a function in species-specific pheromone detection in primates.  相似文献   

14.
Because of evolutionary pressures imposed through episodic colonization by retroviruses, many mammals express factors, such as TRIM5alpha and APOBEC3 proteins, that directly restrict retroviral replication. TRIM5 and APOBEC restriction factors are most often studied in the context of modern primate lentiviruses, but it is likely that ancient retroviruses imposed the selective pressure that is evident in primate TRIM5 and APOBEC3 genes. Moreover, these antiretroviral factors have been shown to act against a variety of retroviruses, including gammaretroviruses. Endogenous retroviruses can provide a 'fossil record' of extinct retroviruses and perhaps evidence of ancient TRIM5 and APOBEC3 antiviral activity. Here, we investigate whether TRIM5 and APOBEC3 proteins restricted the replication of two groups of gammaretroviruses that were endogenized in the past few million years. These endogenous retroviruses appear quite widespread in the genomes of old world primates but failed to colonize the human germline. Our analyses suggest that TRIM5alpha proteins did not pose a major barrier to the cross-species transmission of these two families of gammaretroviruses, and did not contribute to their extinction. However, we uncovered extensive evidence for inactivation of ancient gammaretroviruses through the action of APOBEC3 cytidine deaminases. Interestingly, the identities of the cytidine deaminases responsible for inactivation appear to have varied in both a virus and host species-dependent manner. Overall, sequence analyses and reconstitution of ancient retroviruses from remnants that have been preserved in the genomes of modern organisms offer the opportunity to probe and potentially explain the evolutionary history of host defenses against retroviruses.  相似文献   

15.
16.
17.
The origin of new genes through gene duplication is fundamental to the evolution of lineage- or species-specific phenotypic traits. In this report, we estimate the number of functional retrogenes on the lineage leading to humans generated by the high rate of retroposition (retroduplication) in primates. Extensive comparative sequencing and expression studies coupled with evolutionary analyses and simulations suggest that a significant proportion of recent retrocopies represent bona fide human genes. We estimate that at least one new retrogene per million years emerged on the human lineage during the past ∼63 million years of primate evolution. Detailed analysis of a subset of the data shows that the majority of retrogenes are specifically expressed in testis, whereas their parental genes show broad expression patterns. Consistently, most retrogenes evolved functional roles in spermatogenesis. Proteins encoded by X chromosome−derived retrogenes were strongly preserved by purifying selection following the duplication event, supporting the view that they may act as functional autosomal substitutes during X-inactivation of late spermatogenesis genes. Also, some retrogenes acquired a new or more adapted function driven by positive selection. We conclude that retroduplication significantly contributed to the formation of recent human genes and that most new retrogenes were progressively recruited during primate evolution by natural and/or sexual selection to enhance male germline function.  相似文献   

18.
19.
20.
The TRIM5alpha proteins of humans and some Old World monkeys have been shown to block infection of particular retroviruses following virus entry into the host cell. Infection of most New World monkey cells by the simian immunodeficiency virus of macaques (SIVmac) is restricted at a similar point. Here we examine the antiretroviral activity of TRIM5alpha orthologs from humans, apes, Old World monkeys, and New World monkeys. Chimpanzee and orangutan TRIM5alpha proteins functionally resembled human TRIM5alpha, potently restricting infection by N-tropic murine leukemia virus (N-MLV) and moderately restricting human immunodeficiency virus type 1 (HIV-1) infection. Notably, TRIM5alpha proteins from several New World monkey species restricted infection by SIVmac and the SIV of African green monkeys, SIVagm. Spider monkey TRIM5alpha, which has an expanded B30.2 domain v3 region due to a tandem triplication, potently blocked infection by a range of retroviruses, including SIVmac, SIVagm, HIV-1, and N-MLV. Tandem duplications in the TRIM5alpha B30.2 domain v1 region of African green monkeys are also associated with broader antiretroviral activity. Thus, variation in TRIM5alpha proteins among primate species accounts for the observed patterns of postentry restrictions in cells from these animals. The TRIM5alpha proteins of some monkey species exhibit dramatic lengthening of particular B30.2 variable regions and an expanded range of susceptible retroviruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号