首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sorting of cargoes in endosomes occurs through their selective enrichment into sorting platforms, where transport intermediates are generated. The WASH complex, which directly binds to lipids, activates the Arp2/3 complex and hence actin polymerization onto such sorting platforms. Here, we analyzed the role of actin polymerization in the physiology of endosomal domains containing WASH using quantitative image analysis. Actin depolymerization is known to enlarge endosomes. Using a novel colocalization method that is insensitive to the heterogeneity of size and shape of endosomes, we further show that preventing the generation of branched actin networks induces endosomal accumulation of the WASH complex. Moreover, we found that actin depolymerization induces a dramatic decrease in the recovery of endosomal WASH after photobleaching. This result suggests a built-in turnover, where the actin network, i.e. the product of the WASH complex, contributes to the dynamic exchange of the WASH complex by promoting its detachment from endosomes. Our experiments also provide evidence for a role of actin polymerization in the lateral compartmentalization of endosomes: several WASH domains exist at the surface of enlarged endosomes, however, the WASH domains coalesce upon actin depolymerization or Arp2/3 depletion. Branched actin networks are thus involved in the regulation of the size of WASH domains. The potential role of this regulation in membrane scission are discussed.  相似文献   

2.
WASP and SCAR homologue (WASH) is a recently identified and evolutionarily conserved regulator of actin polymerization. In this paper, we show that WASH coats mature Dictyostelium discoideum lysosomes and is essential for exocytosis of indigestible material. A related process, the expulsion of the lethal endosomal pathogen Cryptococcus neoformans from mammalian macrophages, also uses WASH-coated vesicles, and cells expressing dominant negative WASH mutants inefficiently expel C. neoformans. D. discoideum WASH causes filamentous actin (F-actin) patches to form on lysosomes, leading to the removal of vacuolar adenosine triphosphatase (V-ATPase) and the neutralization of lysosomes to form postlysosomes. Without WASH, no patches or coats are formed, neutral postlysosomes are not seen, and indigestible material such as dextran is not exocytosed. Similar results occur when actin polymerization is blocked with latrunculin. V-ATPases are known to bind avidly to F-actin. Our data imply a new mechanism, actin-mediated sorting, in which WASH and the Arp2/3 complex polymerize actin on vesicles to drive the separation and recycling of proteins such as the V-ATPase.  相似文献   

3.
The Arp2/3 complex is essential for actin filament nucleation in a variety of cellular processes. The activation of the Arp2/3 complex is mediated by nucleation-promoting factors, such as the Wiskott-Aldrich syndrome family proteins, which share a WCA (WH2 domain, central region, acidic region) catalytic module at the C-terminal region, required for Arp2/3 activation, but diverge at the N-terminal region, required for binding to specific activators. Here, we report the characterization of WASH, a new member of the WAS family that has nucleation-promoting factor activity and recently has been demonstrated to play a role in endosomal sorting. We found that overexpression of the WASH-WCA domain induced disruption of the actin cytoskeleton, whereas overexpression of full-length WASH in mammalian cells did not affect stress fiber organization. Furthermore, our analysis has revealed that nerve growth factor treatment of PC12 cells overexpressing full-length WASH leads to disruption of the actin cytoskeleton. We have also found that WASH interacts through its N-terminal region with BLOS2, a centrosomal protein belonging to the BLOC-1 complex that functions as a scaffolding factor in the biogenesis of lysosome-related organelles. In addition to BLOS2, WASH also interacts with centrosomal γ-tubulin and with pallidin, an additional component of the BLOC-1 complex. Collectively, our data propose that WASH is a bimodular protein in which the C terminus is involved in Arp2/3-mediated actin nucleation, whereas the N-terminal portion is required for its regulation and localization in the cells. Moreover, our data suggest that WASH is also a component of the BLOC-1 complex that is associated with the centrosomes.  相似文献   

4.
The Arp2/3 complex generates branched actin networks that exert pushing forces onto different cellular membranes. WASH complexes activate Arp2/3 complexes at the surface of endosomes and thereby fission transport intermediates containing endocytosed receptors, such as α5β1 integrins. How WASH complexes are assembled in the cell is unknown. Here, we identify the small coiled‐coil protein HSBP1 as a factor that specifically promotes the assembly of a ternary complex composed of CCDC53, WASH, and FAM21 by dissociating the CCDC53 homotrimeric precursor. HSBP1 operates at the centrosome, which concentrates the building blocks. HSBP1 depletion in human cancer cell lines and in Dictyostelium amoebae phenocopies WASH depletion, suggesting a critical role of the ternary WASH complex for WASH functions. HSBP1 is required for the development of focal adhesions and of cell polarity. These defects impair the migration and invasion of tumor cells. Overexpression of HSBP1 in breast tumors is associated with increased levels of WASH complexes and with poor prognosis for patients.  相似文献   

5.
γ-Tubulin serves as a template in the γ-TuRC machinery to nucleate microtubules. Curiously, γ-tubulin also interacts with Arp2/3, a complex that nucleates actin filaments, and with the Arp2/3 activator WASH. We previously reported that γ-tubulin and Arp2/3 colocalize at the centrosome, where WASH localizes. Here, we report that γ-tubulin localizes at actin-based membrane protrusions, where Arp2/3 operates. This was confirmed by the presence of tagged γ-tubulin at membrane protrusions in stimulated cells and by downregulation of γ-tubulin expression. Surprisingly, expression of tagged γ-tubulin dramatically inhibited the formation of stress-fibers, while having no effect on microtubules. This phenotype is similar to the disruption of stress-fibers by the overexpression of the WCA domain of WASH and other Wiskott–Aldrich syndrome (WAS) family members. We hypothesize that γ-tubulin regulates Arp2/3 and actin nucleation promoting factors such as WASH, explaining the similar effect of γ-tubulin expression and WCA domain expression on stress-fibers. The data presented here indicate that γ-tubulin has a profound relationship with actin filament dynamics.  相似文献   

6.
The five‐subunit WASH complex generates actin networks that participate in endocytic trafficking, migration and invasion in various cell types. Loss of one of the two subunits WASH or strumpellin in mice is lethal, but little is known about their role in mammals in vivo. We explored the role of strumpellin, which has previously been linked to hereditary spastic paraplegia, in the mouse melanocytic lineage. Strumpellin knockout in melanocytes revealed abnormal endocytic vesicle morphology but no impairment of migration in vitro or in vivo and no change in coat colour. Unexpectedly, WASH and filamentous actin could still localize to vesicles in the absence of strumpellin, although the shape and size of vesicles was altered. Blue native PAGE revealed the presence of two distinct WASH complexes, even in strumpellin knockout cells, revealing that the WASH complex can assemble and localize to endocytic compartments in cells in the absence of strumpellin.  相似文献   

7.
Wiskott-Aldrich syndrome protein and SCAR homologue (WASH) is an important regulator of vesicle trafficking. By generating actin on the surface of intracellular vesicles, WASH is able to directly regulate endosomal sorting and maturation. We report that, in Dictyostelium, WASH is also required for the lysosomal digestion of both phagocytic and autophagic cargo. Consequently, Dictyostelium cells lacking WASH are unable to grow on many bacteria or to digest their own cytoplasm to survive starvation. WASH is required for efficient phagosomal proteolysis, and proteomic analysis demonstrates that this is due to reduced delivery of lysosomal hydrolases. Both protease and lipase delivery are disrupted, and lipid catabolism is also perturbed. Starvation-induced autophagy therefore leads to phospholipid accumulation within WASH-null lysosomes. This causes the formation of multilamellar bodies typical of many lysosomal storage diseases. Mechanistically, we show that, in cells lacking WASH, cathepsin D becomes trapped in a late endosomal compartment, unable to be recycled to nascent phagosomes and autophagosomes. WASH is therefore required for the maturation of lysosomes to a stage at which hydrolases can be retrieved and reused.  相似文献   

8.
Pathogenic mycobacteria survive in phagocytic host cells primarily as a result of their ability to prevent fusion of their vacuole with lysosomes, thereby avoiding a bactericidal environment. The molecular mechanisms to establish and maintain this replication compartment are not well understood. By combining molecular and microscopical approaches we show here that after phagocytosis the actin nucleation‐promoting factor WASH associates and generates F‐actin on the mycobacterial vacuole. Disruption of WASH or depolymerization of F‐actin leads to the accumulation of the proton‐pumping V‐ATPase around the mycobacterial vacuole, its acidification and reduces the viability of intracellular mycobacteria. This effect is observed for M. marinum in the model phagocyte Dictyostelium but also for M. marinum and M. tuberculosis in mammalian phagocytes. This demonstrates an evolutionarily conserved mechanism by which pathogenic mycobacteria subvert the actin‐polymerization activity of WASH to prevent phagosome acidification and maturation, as a prerequisite to generate and maintain a replicative niche.  相似文献   

9.
Natural killer (NK) cells are important effector cells of the innate immune system to kill certain virus-infected and transformed cells. Wiskott–Aldrich Syndrome protein (WASP) and SCAR homolog (WASH) has been identified as a member of WASP family proteins implicated in regulating the cytoskeletal reorganization, yet little is known about its function in lymphocytes. Here we demonstrate that WASH is crucial for NK cell cytotoxicity. WASH was found to colocalize with lytic granules upon NK cell activation. Knockdown of WASH expression substantially inhibited polarization and release of lytic granules to the immune synapse, resulting in the impairment of NK cell cytotoxicity. More importantly, our data also define a previously unappreciated mechanism for WASH function, in which Src family kinase Lck can interact with WASH and induce WASH phosphorylation. Mutation of tyrosine residue Y141, identified here as the major site of WASH phosphorylation, partially blocked WASH tyrosine phosphorylation and NK cell cytotoxicity. Taken together, these observations suggest that WASH has a pivotal role for regulation of NK cell cytotoxicity through Lck-mediated Y141 tyrosine phosphorylation.Natural killer (NK) cells are the first defense line against viral infections and tumors.1 NK cell-mediated lysis of target cells requires the formation of immunological synapse between NK cells and target cells and subsequent delivery of lytic granules containing perforin and granzymes.2, 3 The importance of the actin cytoskeleton in this process has been well documented.4 However, the precise mechanism of actin reorganization in NK cells remains to be elucidated.Wiskott–Aldrich syndrome protein (WASP) is the first identified member of an actin regulator family.5 WASP family proteins contain a C-terminal domain that binds to and activates the Arp2/3 complex for cytoskeleton remodeling.6 In the absence of WASP, cytotoxic activity of NK cells is defective owing to impaired immune synapse formation and perforin localization.7 It has also been shown that WASP may be important for integration of NK cell signaling, particularly for nuclear translocation of NFAT2 and NF-κB during the activating receptor NKp46-dependent activation.8WASP and SCAR homolog (WASH) has been discovered as a new WASP family member.9 Subsequent studies show that WASH interacts with multiple proteins, including FAM21, to form a large core complex and regulate actin dynamics.10 WASH localizes to sorting and recycling endosomes, where WASH complex activates Arp2/3-mediated actin polymerization and controls the production of transport intermediates from endosome.11 Unlike other WASP family members, WASH has distinct N-terminal domains, termed WASH homology domain 1 (WHD1) and tubulin-binding region (TBR).12 Moreover, WASH has been shown to regulate recycling of many surface receptors via endosomal trafficking in activated T cells.13In our previous works, we found embryonic lethality and extensive autophagy in WASH-deficient mice. WASH recruits RNF2 to ubiquitinate AMBRA1 and inhibits the ubiquitination of Beclin1, a well-known moderator in autophage.14, 15 Of interest, WASH is located in cell nucleus and participates in hematopoietic stem cell differentiation through recruiting NURF complex to c-Myc promoter.16 However, the role and mechanism of WASH in NK cell function remain poorly understood.In this study, we show that inhibition of WASH expression with RNA interference or an inducible gene targeting system severely impair NK cell cytotoxicity through blockade of lytic granule polarization. In addition, Src family kinase Lck can interact with and induce tyrosine phosphorylation of WASH protein in human NK cells. These analyses provide the cellular and molecular mechanisms involved in the regulation of WASH function during NK cell activation.  相似文献   

10.
Vesicle biogenesis machinery components such as coat proteins can interact with the actin cytoskeleton for cargo sorting into multiple pathways. It is unknown, however, whether these interactions are a general requirement for the diverse endosome traffic routes. In this study, we identify actin cytoskeleton regulators as previously unrecognized interactors of complexes associated with the Hermansky–Pudlak syndrome. Two complexes mutated in the Hermansky–Pudlak syndrome, adaptor protein complex-3 and biogenesis of lysosome-related organelles complex-1 (BLOC-1), interact with and are regulated by the lipid kinase phosphatidylinositol-4-kinase type IIα (PI4KIIα). We therefore hypothesized that PI4KIIα interacts with novel regulators of these complexes. To test this hypothesis, we immunoaffinity purified PI4KIIα from isotope-labeled cell lysates to quantitatively identify interactors. Strikingly, PI4KIIα isolation preferentially coenriched proteins that regulate the actin cytoskeleton, including guanine exchange factors for Rho family GTPases such as RhoGEF1 and several subunits of the WASH complex. We biochemically confirmed several of these PI4KIIα interactions. Of importance, BLOC-1 complex, WASH complex, RhoGEF1, or PI4KIIα depletions altered the content and/or subcellular distribution of the BLOC-1–sensitive cargoes PI4KIIα, ATP7A, and VAMP7. We conclude that the Hermansky–Pudlak syndrome complex BLOC-1 and its cargo PI4KIIα interact with regulators of the actin cytoskeleton.  相似文献   

11.
Wiskott-Aldrich syndrome protein (WASPs) control actin dynamics in cellular processes, including cell motility, receptor-mediated endocytosis, bacterial invasion, and vesicular trafficking. We demonstrated that WASH, a recently identified WASP family protein, colocalizes on endosomal subdomains with the cargo-selective complex (CSC) of the retromer, where it regulates retrograde sorting from endosomes in an actin-dependent manner. However, the mechanism of WASH recruitment to these retromer-enriched endosomal subdomains is unclear. Here we show that a component of the WASH regulatory complex (SHRC), FAM21, which contains 21 copies of a novel L-F-[D/E](3-10)-L-F motif, directly interacts with the retromer CSC protein VPS35. Endosomal localization of FAM21 is VPS35 dependent and relies on multivalency of FAM21 repeat elements. Using a combination of pull-down assays and isothermal calorimetry, we demonstrate that individual repeats can bind CSC, and binding affinity varies among different FAM21 repeats. A high-affinity repeat can be converted into a low-affinity one by mutation of a hydrophobic residue within the motif. These in vitro data mirror the localization of FAM21 to retromer-coated vesicles in cells. We propose that multivalency enables FAM21 to sense the density of retromer on membranes, allowing coordination of SHRC recruitment, and consequent actin polymerization, with retromer sorting domain organization/maturation.  相似文献   

12.
Highlights? Dictyostelium WASH complex neutralizes lysosomes, then is recycled in small vesicles ? FAM21 is required at a different step than the other four WASH complex subunits ? Mutants in FAM21 can make actin on vesicles but cannot recycle WASH complex after use ? WASH complex is recycled coupling between actin, capping protein, and FAM21  相似文献   

13.
ER contact sites define the position of endosome bud fission during actin-dependent cargo sorting. Disrupting endosomal actin structures prevents retrograde cargo movement; however, how actin affects ER contact site formation and endosome fission is not known. Here we show that in contrast with the WASH complex, actin, its nucleator ARP2/3, and COR1C form a contained structure at the bud neck that defines the site of bud fission. We found that actin confinement is facilitated by type I coronins. Depletion of type I coronins allows actin to extend along the length of the bud in an ARP2/3-dependent manner. We demonstrate that extension of branched actin prevents ER recruitment and stalls buds before fission. Finally, our structure-function studies show that the COR1C’s coiled-coil domain is sufficient to restore actin confinement, ER recruitment, and endosome fission. Together, our data reveal how the dynamics of endosomal actin and activity of actin regulators organize ER-associated bud fission.  相似文献   

14.
WASP family proteins are nucleation promoting factors that bind to and activate the Arp2/3 complex in order to stimulate nucleation of branched actin filaments. The WASP family consists of WASP, N-WASP, WAVE1-3, WASH, and the novel family members WHAMM and JMY. Each of the family members contains a C-terminus responsible for their nucleation promoting activity and unique N-termini that allow for them to be regulated in a spatiotemporal manner. Upon activation they reorganize the cytoskeleton for different cellular functions depending on their subcellular localization and regulatory protein interactions. Emerging evidence indicates that WASH, WHAMM, and JMY have functions that require the coordination of both actin polymerization and microtubule dynamics. Here, we review the mechanisms of regulation for each family member and their associated in vivo functions including cell migration, vesicle trafficking, and neuronal development.  相似文献   

15.
Mutations in the gene encoding strumpellin cause autosomal dominant hereditary spastic paraplegia (HSP), in which there is degeneration of corticospinal tract axons. Strumpellin is a component of the WASH complex, an actin-regulating complex that is recruited to endosomes by interactions with the retromer complex. The WASH complex and its relationship to retromer have not been fully characterised in neurons, and the molecular pathological mechanism of strumpellin mutation is unclear. Here we demonstrate that the WASH complex assembles in the brain, where it interacts with retromer. Members of both complexes co-localise with each other and with endosomes in primary cortical neurons, and are present in somato-dendritic and axonal compartments. We show that strumpellin is not required for normal transferrin receptor traffic, but is required for the correct subcellular distribution of the β-2-adrenergic receptor. However, strumpellin disease mutations do not affect its incorporation into the WASH complex or its subcellular localisation, nor do they have a dominant effect on functions of the WASH complex, including regulation of endosomal tubulation, transferrin receptor traffic or β-2-adrenergic receptor localisation. Models of the WASH complex indicate that it contains a single strumpellin molecule, so in patients with strumpellin mutations, complexes containing wild-type and mutant strumpellin should be present in equal numbers. In most cell types this would provide sufficient functional WASH to allow normal cellular physiology. However, owing to the demands on membrane traffic imposed by their exceptionally long axons, we suggest that corticospinal neurons are especially vulnerable to reductions in functional WASH.  相似文献   

16.

Background

Soil-transmitted helminths (STH) – a class of parasites that affect billions of people – can be mitigated using mass drug administration, though reinfection following treatment occurs within a few months. Improvements to water, sanitation and hygiene (WASH) likely provide sustained benefit, but few rigorous studies have evaluated the specific WASH components most influential in reducing infection. There is a need for alternative analytic approaches to help identify, characterize and further refine the WASH components that are most important to STH reinfection. Traditional epidemiological approaches are not well-suited for assessing the complex and highly correlated relationships commonly seen in WASH.

Methodology

We introduce two recursive partitioning approaches: classification and regression trees (C&RT) and conditional inference trees (CIT), which can be used to identify complex interactions between WASH indicators and identify sub-populations that may be susceptible to STH reinfection. We illustrate the advantages and disadvantages of these approaches utilizing school- and household-level WASH indicators gathered as part of a school-based randomized control trial in Kenya that measured STH reinfection of pupils 10 months following deworming treatment.

Principal Findings

C&RT and CIT analyses resulted in strikingly different decision trees. C&RT may be the preferred approach if interest lies in using WASH indicators to classify individuals or communities as STH infected or uninfected, whereas CIT is most appropriate for identifying WASH indicators that may be causally associated with STH infection. Both tools are well-suited for identifying complex interactions among WASH indicators.

Conclusions/Significance

C&RT and CIT are two analytic approaches that may offer valuable insight regarding the identification, selection and refinement of WASH indicators and their interactions with regards to STH control programs; however, they represent solutions to two distinct research questions and careful consideration should be made before deciding which approach is most appropriate.  相似文献   

17.
Orphans who lack household or community support face significant socio-economic disadvantages. In particular, they are at greater risk of malnutrition and stunting in developing countries. Children who have no living parents, also called double orphans, are most likely to require support from extended families or public institutions. This paper explores how WASH infrastructure, and public health and social services relate to stunting. It is one of the first studies to analyse these factors with a specific focus on double orphans, who tend to live in under-serviced areas with high stunting rates and poor access to public resources. We collate a cross sectional spatial dataset with local child stunting rates from 2013, rates of double orphanhood, private household resources, and public services from 2011 for South Africa, a country where the HIV/AIDS pandemic has led to high rates of double orphanhood. We estimate spatial econometric models that account for unobserved regional shocks and measurement bias, but which do not address other biases. Our results show that high stunting rates, particularly in areas with high proportions of double orphans, overlap strongly with poor provision of WASH and the availability of household resources. By contrast, other softer services accessed outside the home, such as access to health, social welfare and early childhood development facilities are not correlated with stunting in the same way. WASH is more strongly related to reduced stunting when infrastructure covers larger geographic areas and with the combined use of services from adjacent areas. This occurs because of economies of scale in provision and preventing transmission of disease across regions. Policy makers can explore the option to reduce stunting by expanding geographic networks of WASH service delivery into under-serviced areas where double orphans tend to locate.  相似文献   

18.
Autophagy degrades cytoplasmic proteins and organelles to recycle cellular components that are required for cell survival and tissue homeostasis. However, it is not clear how autophagy is regulated in mammalian cells. WASH (Wiskott–Aldrich syndrome protein (WASP) and SCAR homologue) plays an essential role in endosomal sorting through facilitating tubule fission via Arp2/3 activation. Here, we demonstrate a novel function of WASH in modulation of autophagy. We show that WASH deficiency causes early embryonic lethality and extensive autophagy of mouse embryos. WASH inhibits vacuolar protein sorting (Vps)34 kinase activity and autophagy induction. We identified that WASH is a new interactor of Beclin 1. Beclin 1 is ubiquitinated at lysine 437 through lysine 63 linkage in cells undergoing autophagy. Ambra1 is an E3 ligase for lysine 63‐linked ubiquitination of Beclin 1 that is required for starvation‐induced autophagy. The lysine 437 ubiquitination of Beclin 1 enhances the association with Vps34 to promote Vps34 activity. WASH can suppress Beclin 1 ubiquitination to inactivate Vps34 activity leading to suppression of autophagy.  相似文献   

19.
Nucleation promoting factors (NPFs) activate the Arp2/3 complex to produce branched actin filaments. Branched actin filaments are observed in most organelles, and specific NPFs, such as WASP, N-WASP, WAVEs, WASH, and WHAMM, exist for each organelle. Interestingly, Arp2/3 and NPFs are both inactive by themselves, and thus require activation. The exposure of the Arp2/3 activating region, the VCA fragment, is recognized to be a key event in the activation of the NPFs. Together, small GTPase binding, phosphorylation, SH3 binding, and membrane binding promote VCA exposure synergistically. The increase in the local concentration of NPF by multimerization is thought to occur with the combination of such activators, to maximally activate the NPF and confine the region of actin polymerization. The mechanism of uni-directional filament extension beneath the membrane also is discussed.  相似文献   

20.
The tail domain of vinculin (V(t)) is an actin binding module containing two regions that interact with F-actin. Although intact V(t) purified from a bacterial expression system is a globular monomer, each actin binding region dimerizes when expressed individually, suggesting the presence of cryptic self-association sites whose exposure is regulated. We show that actin modulates V(t) self-association by inducing or stabilizing a conformational change in V(t) that allows dimerization. Chemical cross-linking studies implicate one of the actin binding regions in mediating dimerization in the presence of actin. Actin-induced V(t) dimers may play a role in the filament cross-linking activity of this protein. The V(t) dimers induced by actin are biochemically distinct from the V(t) dimers and higher oligomers induced by acidic phospholipids such as phosphatidylinositol 4,5-bisphosphate, suggesting structural differences in V(t) bound to these two ligands that may provide a mechanistic basis for inhibition of F-actin binding by phosphatidylinositol 4,5-bisphosphate. The ability of actin to regulate the dimerization state of an actin binding protein suggests that, rather than serving a passive structural role, actin filaments may directly participate in signal transduction and other cellular events that are known to depend on cytoskeletal integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号