首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During the developmental cycle of Dictyostelium discoideum cyclic AMP functions as both a chemotactic signal for aggregation and a regulatory molecule during later events of differentiation. Morphological and biochemical data suggest that cAMP may direct cells during morphogenesis and differentiation. We utilized microtechniques to determine the stage- and cell-specific levels of the cAMP-dependent protein kinase, the probable intracellular cAMP receptor. Kinase activity was low and non-cAMP-dependent in amoebae and early aggregates but increased and became cAMP-dependent in aggregates after the formation of tight cell contacts. Maximum kinase activity and cAMP dependency occurred during the slug and culmination stages. The only differential distribution of the kinase within a single stage occurred during culmination when the activity in the stalks was approximately one-fourth of that in the prespore mass. Preliminary evidence indicates that this difference is not due to an inhibitor. In all other stages tested cAMP-dependent protein kinase activity was equal in prespore and prestalk cells.  相似文献   

2.
Abstract. It has recently been found that the culmination process of Dictyostelium minutum is accompanied by the appearance of oscillatory cell movement, cell-surface cAMP receptors, and cAMP phosphodiesterase. In the present study, it is demonstrated that the cAMP analog 2'deoxyc-AMP induces a transient accumulation and secretion of cAMP in culminating structures. At least 50-fold-less cAMP is accumulated during relay of D. minutum than during relay of Dictyostelium discoideum aggregative cells. No cAMP relay could be induced in vegetative or aggregative cells of D. minutum . These combined results yield evidence that oscillatory cAMP secretion and relay are involved in the organization of cell movement during the culmination of D. minutum .  相似文献   

3.
Cyclic 3',5'-adenosine monophosphate (cAMP) is secreted as the chemotactic signal by aggregating amoebae of the cellular slime mold Dictyostelium discoideum. We have used ultramicrotechniques in the biochemical analysis of cyclic nucleotide phosphodiesterase (PD) distribution in individual aggregates at various stages of development. With handmade constriction pipettes in microliter volumes, sections of lyophilized individuals weighing 20-100 ng could be assayed in a reaction coupled to 5'-nucleotidase. Phosphodiesterase activity was measured at pH 7.5 with 12 microM cAMP, cAMP-PD activity in aggregates ranged from 20-40 mmol/h/kg. In the pseudoplasmodium it had dropped to 5-10 mmol/h/kg and a difference in activity between the anterior prestalk cells and posterior prespore cells began to appear. The utmost posterior sections showed elevated phosphodiesterase from this stage onward. During culmination, activity rose to 40-60 mmol/h/kg associated with the developing stalk, while it declined in the spore mass. The papilla remained constant at 5-10 mmol/h/kg. The pattern of localization in the stalk was the same when cGMP was used as substrate. Extracellular phosphodiesterase inhibitor produced at the aggregation stage was found to reduce the localized activity in the culmination stage by 50-80%, with the most marked inhibition occurring in the center of the papilla. We found no evidence of endogenous heat-stable phosphodiesterase inhibitor within the culminating sorocarp.  相似文献   

4.
Abstract. Cell aggregation in Dictyostelium discoideum is a chemotactic process mediated by cyclic adenosine monophosphate (CAMP), which is detected by cell surface receptors. The cAMP signal is degraded by cAMP phosphodiesterase. The possibility that cAMP signals are also used for cell communication in the multicellular stages was studied by determining whether the cAMP receptors, which are essential for signal transduction, continue to function in these stages. During slug migration, the number of binding sites per cell decreases to about 15% of the maximum level acquired during aggregation. At the onset of fruiting body formation, a three- to Four-Fold increase in cAMP binding activity occurs. This increase coincides with an increase in cAMP phosphodiesterase. Both phenomena suggest that cell-cell communication mediated by cAMP is used during culmination. During both slug migration and early culmination, the prestalk cells exhibit about twice as much binding activity as the prespore cells.  相似文献   

5.
The spatial expression patterns of genes involved in cyclic adenosine monophosphate (cAMP) responses during morphogenesis in Dictyostelium discoideum were analyzed by in situ hybridization. Genes encoding adenylyl cyclase A (ACA), cAMP receptor 1, G-protein alpha2 and beta subunits, cytosolic activator of ACA (CRAC and Aimless), catalytic subunit of protein kinase A (PKA-C) and cAMP phosphodiesterases (PDE and REG-A) were preferentially expressed in the anterior prestalk (tip) region of slugs, which acts as an organizing center. MAP kinase ERK2 (extracellular signal-regulated kinase-2) mRNA, however, was enriched in the posterior prespore region. At the culmination stage, the expression of ACA, CRAC and PKA-C mRNA increased in prespore cells in contrast with the previous stage. However, no alteration in the site of expression was observed for the other mRNA analyzed. Based on these findings, two and four classes of expression patterns were catalogued for these genes during the slug and culmination stages, respectively. Promoter analyses of genes in particular classes should enhance understanding of the regulation of dynamic and coordinated gene expression during morphogenesis.  相似文献   

6.
A genetic melanotic neoplasm of Drosophila melanogaster   总被引:6,自引:0,他引:6  
The construction of mature fruiting bodies occurs during the culmination stage of development of Dictyostelium discoideum. These contain at least two different cell types, spores and stalks, which originate from an initially homogenous population of vegetative amoebas. As an attempt to identify proteins whose synthesis is regulated in each cell type during differentiation, we have analyzed the two-dimensional profiles of proteins synthesized by spore and stalk cells during the culmination stage. We have identified 5 major polypeptides which are specifically synthesized by spore cells during culmination and 9 which are only made by stalk cells. Furthermore, synthesis of about 20 polypeptides appears to be enriched either in the spore or in the stalk cells. We also show that synthesis of actin, a major protein synthesized during Dictyostelium development, is specifically inhibited in the spore cells during culmination. Synthesis of most of the cell type-specific proteins initiates at 19–20 hr, during culmination. Moreover, the proteins whose synthesis is induced after formation of tight aggregates, the time when the major change in gene expression occurs, are not specifically incorporated into spores or stalk cells, and appear to be synthesized by both cell types. We conclude that a new class of genes is expressed during the culmination stage in Dictyostelium, giving rise to specific patterns of protein synthesis in spore and stalk cells.  相似文献   

7.
Oscillatory cAMP signals very likely organize the cell movement which leads to fruiting body construction in Dictyostelium minutum [Schaap, P., Konijn, T.M. and Van Haastert, P.J.M.: Proc. Natl. Acad. Sci. USA 81, 2122-2126 (1984)]. Stimulation with cAMP induces a transient elevation of cGMP in cells at the early culmination stage, which peaks at 12-18 s. A half maximal cGMP response is induced by 10(-7) M cAMP and saturation of the response is reached at 10(-5) M cAMP. No cGMP accumulation was induced by stimulation of vegetative or aggregative cells of D. minutum by cAMP. Since the transient increase of cGMP is most likely involved in the transduction of chemotactic signals, our results indicate that cAMP signals organize fruiting body formation by inducing chemotaxis inside the aggregate.  相似文献   

8.
Cyclic-AMP phosphodiesterase (PDE) accumulates during the aggregation stage of Dictyostelium where it functions in maintaining extracellular levels of cyclic AMP (cAMP). The activity decreases during the subsequent multicellular slug stage and then accumulates again during sorocarp construction, but the enzyme is active only in the developing stalk. Because of the possible significance of this localized activity in only one of the two cell types, we have purified the enzyme from the multicellular stage in order to understand its mode of regulation in vivo. We find that the enzyme which is localized in the prestalk cells is similar in many respects to the extracellular PDE which is active at the aggregation stage. The enzyme from both stages is inhibited by a low molecular weight protein. The mechanism of this inhibition is through a shift in the apparent Km for cAMP from micromolar to millimolar levels. The inhibited form of the enzyme can be activated by preincubation with MgSO4 and dithiothreitol (DTT). This activation treatment releases the inhibitor from the enzyme, thus restoring the low Km form, changes the molecular weight of the culmination stage enzyme from 95 000-100 000 to 68 000 by releasing the Mr 35 000-40 000 inhibitor protein, and causes irreversible loss of inhibitor activity. Although the inhibitor could be obtained in high yield from the aggregation stage by simply heating the extracellular fluid, it could not be detected from culmination stage extracts when prepared by this method. However, inclusion of calcium in the extraction buffer resulted in release of inhibitor from both heated and nonheated samples. The results indicate that the stalk cell specific PDE is regulated similarly to the aggregation stage PDE and opens the possibility of differential regulation of PDE in the two cell types.  相似文献   

9.
During culmination of Dictyostelium fruiting bodies, prespore and prestalk cells undergo terminal differentiation to form spores and a cellular stalk. A genomic fragment was isolated by random cloning that hybridizes to a 1.4-kb mRNA present during culmination. Cell type separations at culmination showed that the mRNA is present in prespore cells and spores, but not in prestalk or stalk cells. After genomic mapping, an additional 3 kb of DNA surrounding the original 1-kb fragment was cloned. The gene was sequenced and named Dd31 after the size of the predicted protein product in kilodaltons. Accumulation of Dd31 mRNA occurs immediately prior to sporulation. Addition of 20 mM 8-Br-cAMP to cells dissociated from Mexican hat stage culminants induced sporulation and the accumulation of Dd31 mRNA, while 20 mM cAMP did not. Dd31 mRNA does not accumulate in the homeotic mutant stalky in which prespore cells are converted to stalk cells rather than spores. Characterization of Dd31 extends the known temporal dependent sequence of molecular differentiations to sporulation.  相似文献   

10.
11.
12.
Changes in intracellular and extracellular cAMP levels are reported for the cellular slime mold Dictyostelium discoideum during its development on filter supports. Examined were axenically and bacterially grown strain A3 and bacterially grown NC-4. In each case a major peak in cAMP occurred during aggregation. In addition, axenically grown A3 showed minor rises in cAMP at 16 hr and during culmination; in contrast, NC-4 showed no increase at 16 hr but gave a very large increase at culmination. Both cell-associated phosphodiesterase and the extracellular phosphodiesterase present in the top filter were measured throughout development. Both showed activity peaks during aggregation with much lower plateau values thereafter. At aggregation about 80% of the activity per filter was contributed by the cell-associated phosphodiesterase. The rate of cAMP turnover during aggregation was estimated by following the hydrolysis of applied [3H]cAMP. A minimum rate of about 7% turnover/sec was obtained. From this turnover rate a minimum value for the stimulated activity of the adenylate cyclase was estimated as 224 pmoles/min-mg. Although this level is already over threefold greater than the highest value obtained in vitro, other experiments indicate that the in vivo adenylate cyclase activity may exceed 700 pmoles/min-mg.  相似文献   

13.
Dictyostelium discoideum growing or developing on cellulose dialysis membranes were fixed with acrolein vapour for electron microscopy. In interphase amoebae, nucleoli began to protrude from the nuclei. The percentage of cells with protruding nucleoli increased during aggregation by a value approximately twice as high in aggregation streams as in centers. Cells in pseudoplasmodia showed only a low percentage and protrusions disappeared at early culmination stage. The protrusions did not reappear when cells from dissociated pseudoplasmodia migrated toward cAMP. Thus the formation of the protrusions did not depend solely on chemotaxis; rather, it was specific to the aggregation stage. In aggregation streams, the nucleus was anterior in the cell, with the protrusion at its anterior periphery. In contrast, the nucleus associated body (NAB) was evident at the cell's mid-point. This orientation of nucleus and NAB in the aggregating slime mould amoeba is contrary to that seen in human neutrophils or cultured mouse 3T3 cells.  相似文献   

14.
Cyclic AMP is known to function as the chemotactic signal during aggregation of single-celled amoebae of the cellular slime mold Dictyostelium discoideum. Evidence from several laboratories has accumulated suggesting that cAMP also acts as a regulatory molecule during Dictyostelium multicellular differentiation. We have used ultramicrotechniques and a sensitive radioimmunoassay in the localization of adenylate cyclase, the cAMP synthetic enzyme, during the development of Dictyostelium. We demonstrate that adenylate cyclase activity is localized in the prespore cells of the culminating individual with no activity detectable in the prestalk region. We show that this lack of activity in the stalk may be due to a masking by an endogenous inhibitor of the enzyme. Within the spore mass we found an increasing gradient of enzyme activity toward the base. These data, along with that from the localization of cyclic nucleotide phosphodiesterase, indicate that an enzymatic potential exists for the creation of cAMP gradients during development in the organism. Such a gradient may provide positional information necessary to direct the terminal differentiation of spore and stalk cells.  相似文献   

15.
Expression of a dominant inhibitor of the Dictyostelium cAMP-dependent protein kinase in prespore cells blocks their differentiation into spore cells. The resultant structures comprise a normal stalk supporting a bolus of cells that fail to express a sporulation-specific gene and that show greatly reduced levels of expression of several prespore-specific genes. The latter result suggests that in addition to activating spore formation, the cAMP-dependent protein kinase may play a role in initial prespore cell differentiation. Development of the strain expressing the dominant inhibitor is hypersensitive to the inhibitory effects of ammonia, the molecule that is believed to repress entry into culmination during normal development. This result supports a model whereby a decrease in ambient ammonia concentration at culmination acts to elevate intracellular cAMP and hence induce terminal differentiation.  相似文献   

16.
In Dictyostelium discoideum stalk cell formation is induced by cyclic AMP and differentiation-inducing factor (DIF) when cells are plated in in vitro monolayers (Kay et al., 1979, Differentiation 13: 7-14). The in vivo developmental stages at which cells became independent of these factors were determined. Independence was defined as the stage at which dispersed cells no longer required the factors for stalk cell formation in low density monolayers. Cyclic AMP independent cells were first detected at around 12 hr of development, a time that corresponds to the transition between the tipped aggregate and the first finger stages. In contrast cells did not become independent of DIF until late culmination. The prestalk cell-specific isozyme acid phosphatase II and a stalk cell-specific 41,000 Mr antigen (ST 41) were expressed during differentiation in low density monolayers in the presence of both cyclic AMP and DIF, but neither component was expressed in the presence of cyclic AMP alone. This result implies that DIF is essential for both prestalk and stalk cell formation. The two components were expressed within 2 hr of each other during differentiation in vitro, whereas during development in vivo acid phosphatase II was first detected at the first finger stage and ST 41 was first detected during late culmination, 8-12 hr later. These contrasting results suggest that the conversion of prestalk cells to stalk cells is unrestrained in monolayers, following directly after prestalk cell induction, but restrained in vivo until the culmination stage. This interpretation is consistent with the finding that cells become independent of DIF early during in vitro differentiation (A. Sobolewski, N. Neave, and G. Weeks, 1983, Differentiation 25, 93-100), but do not become independent of DIF until the culmination stage when differentiating in vivo.  相似文献   

17.
We have examined the distribution of Dictyostelium lectins (discoidin I and II) during development by means of a sample preparation method of a whole mount. Monoclonal antibodies which were bound to discoidins revealed unique patterns of discoidin distribution. Discoidin I was localized mainly at the periphery of the aggregates, while the base of the aggregates was devoid of discoidin I staining. Discoidin I was not prominent in the body of the aggregates but when a migrating slug culminated, discoidin I staining appeared in the prestalk region, this suggested that prestalk cells begin to express discoidin I at the onset of culmination. During fruit formation we observed discoidin I staining at the foremost anterior prestalk region of the culminant, which implies a heterogeneity of discoidin I expression among prestalk cells; such a heterogenous pattern has also been found in other prestalk-specific proteins. In addition, anterior-like cells (ALC), which were sorted at the apex and basal parts of a spore mass during culmination, were also strongly stained with anti-discoidin I mAb; interestingly, we observed the staining of ALC from the slug stage through fruit formation. No discoidin II was observed in a migrating slug that had already accumulated prespore antigen ligands for discoidin II; it appeared in prespore cells after the onset of culmination. The present results indicate that, in addition to the early expression of discoidin I, both discoidin I and II are expressed during culmination, and these lectins also seem to be involved in the late development of Dictyostelium .  相似文献   

18.
19.
20.
Cyclic AMP phosphodiesterase (PDE) activity reaches a peak during the aggregation stage of development where it functions to regulate extracellular levels of cAMP. During the subsequent differentiation of the two cell types at the culmination stage, the activity reappears but only in stalk cells. We found that extracts from the culmination stage contained PDE which could be activated by preincubation with Mg2+ and dithiothreitol (DTT), a treatment which is known to release an endogenous inhibitor from the aggregation stage enzyme. When the culmination stage extracts were subjected to chromatography on Biogel P300, two peaks of activity were eluted, PDE-I (Mr greater than 260,000) and PDE-II (Mr 100,000). Treatment of the fractions with Mg-DTT did not affect the low-molecular-weight enzyme but caused activation of the high-molecular-weight enzyme and the appearance of a third, intermediate form. Kinetic analysis of the two peaks revealed Km values for cAMP of 2 mM and 10 microM for PDE-I and PDE-II, respectively. We tested the possibility that these forms of the enzyme might be distributed differently in the two cell types by measuring the Km for cAMP and the effect of Mg-DTT treatment on isolated sections of stalk and spore cells. The spore sections contained a high Km form of the enzyme (0.3 mM) which was activated by preincubation with Mg . DTT whereas stalk sections contained a low Km form (3 microM) which was not affected by the activation treatment. We conclude that both cell types contain enzyme protein and that the apparent localization of PDE activity in stalk cells is due to the inhibition of activity in spore cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号