首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Each regulatory subunit of cAMP-dependent protein kinase has two tandem cAMP-binding sites, A and B, at the carboxyl terminus. Based on sequence homologies with the cAMP-binding domain of the Escherichia coli catabolite gene activator protein, a model has been constructed for each cAMP-binding domain. Two of the conserved features of each cAMP-binding site are an arginine and a glutamic acid which interact with the negatively charged phosphate and with the 2'-OH on the ribose ring, respectively. In the type I regulatory subunit, this arginine in cAMP binding site A is Arg-209. Recombinant DNA techniques have been used to change this arginine to a lysine. The resulting protein binds cAMP with a high affinity and associates with the catalytic subunit to form holoenzyme. The mutant holoenzyme also is activated by cAMP. However, the mutant R-subunit binds only 1 mol of cAMP/R-monomer. Photoaffinity labeling confirmed that the mutant R-subunit has only one functional cAMP-binding site. In contrast to the native R-subunit which is labeled at Trp-260 and Tyr-371 by 8-N3cAMP, the mutant R-subunit is convalently modified at a single site, Tyr-371, which correlates with a functional cAMP-binding site B. The lack of functional cAMP-binding site A also was confirmed by activating the mutant holoenzyme with analogs of cAMP which have a high specificity for either site A or site B. 8-NH2-methyl cAMP which preferentially binds to site B was similar to cAMP in its ability to activate both mutant and wild type holoenzyme whereas N6-monobutyryl cAMP, a site A-specific analog, was a very poor activator of the mutant holoenzyme. The results support the conclusions that 1) Arg-209 is essential for cAMP binding to site A and 2) cAMP binding to domain A is not essential for dissociation of the mutant holoenzyme.  相似文献   

2.
J Bubis  S S Taylor 《Biochemistry》1987,26(12):3478-3486
Each regulatory subunit of the cAMP-dependent protein kinase contains two in-tandem cAMP binding sites. Photolabeling of holoenzyme I with 8-azidoadenosine 3',5'-monophosphate (8-N3-cAMP) leads to the covalent modification of two residues, Trp-260 and Tyr-371. In order to correlate photolabeling of these two residues with occupancy of each specific cAMP binding site, photolabeling was carried out in the presence of various analogues of cAMP that bind preferentially to one site. Photolabeling of holoenzyme I after dissociation of 60% of 8-N3-[3H]cAMP with an excess of N6-monobutyryl-cAMP nearly abolished the incorporation of 8-N3-cAMP into Trp-260, whereas the modification of Tyr-371 was reduced by 49%. When 8-N3-[32P]cAMP was bound under equilibrium conditions in the presence of various cAMP analogues, N6-monobutyryl-cAMP also selectively abolished incorporation of radioactivity into Trp-260, whereas 8-(methylamino)-cAMP preferentially reduced the covalent modification of Tyr-371. Photolabeling with trace amounts of 8-N3-[32P]cAMP in the presence of saturating amounts of N6-monobutyryl-cAMP led to the covalent modification of only Tyr-371. In addition, photolabeling of Tyr-371 was enhanced synergistically in the presence of N6-monobutyryl-cAMP. MgATP reduced the covalent modification of both Trp-260 and Tyr-371 but showed no selectivity for either site. These studies support a model that correlates photolabeling of Trp-260 with occupancy of cAMP binding site A and photolabeling of Tyr-371 with occupancy of cAMP binding site B.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The mammalian cAMP-dependent protein kinases have regulatory (R) subunits that show substantial homology in amino acid sequence with the catabolite gene activator protein (CAP), a cAMP-dependent gene regulatory protein from Escherichia coli. Each R subunit has two in-tandem cAMP binding domains, and the structure of each of these domains has been modeled by analogy with the crystal structure of CAP. Both the type I and II regulatory subunits have been considered, so that four cAMP binding domains have been modeled. The binding of cAMP in general is analogous in all the structures and has been correlated with previous results based on photolabeling and binding of cAMP analogues. The model predicts that the first cAMP binding domain correlates with the previously defined fast dissociation site, which preferentially binds N6-substituted analogues of cAMP. The second domain corresponds to the slow dissociation site, which has a preference for C8-substituted analogues. The model also is consistent with cAMP binding in the syn conformation in both sites. Finally, this model has targeted specific regions that are likely to be involved in interdomain contacts. This includes contacts between the two cAMP binding domains as well as contacts with the amino-terminal region of the R subunit and with the catalytic subunit.  相似文献   

4.
The type I and type II regulatory subunits of cAMP-dependent protein kinase can be distinguished by autophosphorylation. The type II regulatory subunits have an autophosphorylation site at a proteolytically sensitive hinge region, while the type I regulatory subunits have a pseudophosphorylation site. Only holoenzyme formed with type I regulatory subunits has a high affinity binding site for MgATP. In order to determine the functional consequences of regulatory subunit phosphorylation on interaction with the catalytic subunit, an autophosphorylation site was introduced into the type I regulatory subunit using recombinant DNA techniques. When Ala97 at the hinge region of the type I regulatory subunit was replaced with Ser, the regulatory subunit became a good substrate for the catalytic subunit. Stoichiometric phosphorylation occurred exclusively at Ser97. Radioactivity was incorporated primarily into the recombinant regulatory subunit when catalytic subunit and [gamma-32P]ATP were added to the total bacterial extract. Phosphorylation of the mutant regulatory subunit also occurred readily following polyacrylamide gel electrophoresis and electrophoretic transfer to nitrocellulose. Phosphorylation occurred as an intramolecular event in the absence of cAMP indicating that the hinge region of the regulatory subunit occupies the substrate recognition site of the catalytic subunit in the holoenzyme complex. Holoenzyme formed with both the wild type and mutant regulatory subunits was susceptible to dissociation in the presence of high salt; however, only the native holoenzyme was stabilized by MgATP. In contrast to the wild type holoenzyme, the affinity of the mutant holoenzyme for cAMP was not reduced in the presence of MgATP. Holoenzyme formation also was not facilitated by MgATP.  相似文献   

5.
The mouse wild type and four mutant regulatory type I (RI) subunits were expressed in Escherichia coli and subjected to kinetic analyses. The defective RI subunits had point mutations in either cAMP-binding site A (G200/E), site B (G324/D, R332/H), or in both binding sites. In addition, a truncated form of RI which lacked the entire cAMP-binding site B was generated. All of the mutant RI subunits which bound [3H]cAMP demonstrated more rapid rates of cAMP dissociation compared to the wild type RI subunit. Dissociation profiles showed only a single dissociation component, suggesting that a single nonmutated binding site was functional. The mutant RI subunits associated with purified native catalytic subunit to form chromatographically separable holoenzyme complexes in which catalytic activity was suppressed. Each of these holoenzymes could be activated but showed varying degrees of cAMP responsiveness with apparent Ka values ranging from 40 nM to greater than 5 microM. The extent to which the mutated cAMP-binding sites were defective was also shown by the resistance of the respective holoenzymes to activation by cAMP analogs selective for the mutated binding sites. Kinetic results support the conclusions that 1) Gly-200 of cAMP-binding site A and Gly-324 or Arg-332 of site B are essential to normal conformation and function, 2) activation of type I cAMP-dependent protein kinase requires that only one of the cAMP-binding sites be functional, 3) mutational inactivation of site B (slow exchange) has a much more drastic effect than that of site A on increasing the Ka of the holoenzyme for cAMP, as well as in altering the rate of cAMP dissociation from the remaining site of the free RI subunit. The strong dependence of one cAMP-binding site on the integrity of the other site suggests a tight association between the two sites.  相似文献   

6.
Activation of cAMP-dependent protein kinase II by static and dynamic steady-state cAMP levels was studied by reconstituting an in vitro model system composed of hormone-sensitive adenylate cyclase, cyclic nucleotide phosphodiesterase, and cAMP-dependent protein kinase II. The rates of cAMP synthesis were regulated by incubating isolated membranes from AtT20 cells with various concentrations of forskolin. In the presence of 3-methylisobutylxanthine, the rate of protein kinase activation was proportional to the rate at which cAMP was synthesized, and there was a direct relationship between the degree of activation and the level of cAMP produced. The activation profiles of protein kinase generated in the presence of exogenous cAMP or cAMP produced by activation of adenylate cyclase in the absence of cAMP degradation were indistinguishable. Dynamic steady-state levels of cAMP were achieved by incubating the membranes with forskolin in the presence of purified cyclic nucleotide phosphodiesterase. Under these conditions, the apparent activation constant of protein kinase II for cAMP was reduced by 65-75%. This increased sensitivity to activation by cAMP was seen when phosphotransferase activity was measured directly in reaction mixtures containing membranes, protein kinase, and histone H2B or when regulatory and catalytic subunits were first separated by immunoprecipitation of holoenzyme and regulatory subunits with specific anti-serum. Our results are consistent with the hypothesis that rapid cAMP turnover may function as a mechanism for amplifying hormonal signals which use the cAMP-dependent protein kinase system.  相似文献   

7.
8.
9.
A truncated regulatory subunit of cAMP-dependent protein kinase I was constructed which contained deletions at both the carboxyl terminus and at the amino terminus. The entire carboxyl-terminal cAMP-binding domain was deleted as well as the first 92 residues up to the hinge region. This monomeric truncated protein still forms a complex with the catalytic subunit, and activation of this complex is mediated by cAMP. The affinity of this mutant holoenzyme for cAMP and its activation by cAMP are nearly identical to holoenzyme formed with a regulatory subunit having only the carboxyl-terminal deletion and very similar to native holoenzyme. The off rate for cAMP from both mutant regulatory subunits, however, is monophasic and very fast relative to the biphasic off rate seen for the native regulatory subunit. The effects of NaCl, urea, and pH on cAMP binding are also very similar for the mutant and native holoenzymes. Like the native type I holoenzyme, both mutant holoenzymes bind ATP with a high affinity. The positive cooperativity seen for MgATP binding to the native holoenzyme, however, is abolished in the double deletion mutant. The Hill coefficient for ATP binding to this mutant holoenzyme is 1.0 in contrast to 1.6 for the native holoenzyme. The Kd (cAMP) is increased by approximately 1 order of magnitude for both mutant forms of the holoenzyme in the presence of MgATP. A similar shift is seen for the native holoenzyme. Further characterization of the MgATP-binding properties of the wild-type holoenzyme indicates that a binary complex containing catalytic subunit and MgATP is required, in particular, for reassociation with the cAMP-bound regulatory subunit. This binary complex is required for rapid dissociation of the bound cAMP and is probably responsible for the observed reduction in cAMP-binding affinity for the type I holoenzyme in the presence of MgATP.  相似文献   

10.
11.
12.
D R Johnson  S S Wong 《FEBS letters》1989,247(2):480-482
The effect of cAMP on the conformation of the regulatory subunit of type II cAMP-dependent protein kinase (RII) from bovine heart was investigated by UV-difference and circular dichroism (CD) spectroscopy. The UV-difference spectrum of RII with and without cAMP showed a positive band around 278 nm and a negative band at 256 nm. Similarly, cAMP enhanced the ellipticity of RII in the region between 280 and 300 nm and decreased that between 250 and 280 nm. In addition, cAMP transformed the far-UV CD spectrum of RII from that of a negative band minimally at 209 nm with a shoulder at 223 nm to one with two minima at 222 and 211 nm. These data show that cAMP induces conformational changes of RII upon binding. Such structural changes may be the basis of activation of cAMP-dependent protein kinases by cAMP.  相似文献   

13.
Each regulatory (R) subunit of cAMP-dependent protein kinase contains an autoinhibitor site that lies approximately 90-100 residues from the amino terminus. In order to study the importance of this autoinhibitor site in the type I R-subunit for interacting with the catalytic (C) subunit, recombinant techniques were used to replace Ala-97 with Gln, His, Lys, and Arg and to replace Ser-99 with Gly and Lys. All of the mutant proteins having a replacement at Ala-97 showed reduced affinity for the C-subunit ranging from 14- to 55-fold. In general, the decrease in affinity of the Ala-97 mutants for the C-subunit correlated with the increase in size of the side chain. In contrast to wild type R-subunit, where MgATP facilitates holoenzyme formation, MgATP inhibits the reassociation in all of the Ala-97 mutants suggesting that the larger side chains sterically interfere with bound MgATP in the active site of the C-subunit. Whereas MgATP slowed holoenzyme formation, AMP actually accelerated the reassociation of the A97K, A97H (pH 6.0), and A97Q mutants with the C-subunit. Therefore, the side chains of Lys-97, His-97, and Gln-97 can interact either electrostatically or by hydrogen bonding with the phosphate of AMP. This interpretation is reinforced by the fact that the stimulatory effect of AMP on the A97H mutant was pH-dependent. The affinities of the S99G and S99K mutants for the C-subunit were reduced 7- and 24-fold, respectively, suggesting that Ser-99 also may contribute to interactions between the R- and C-subunits.  相似文献   

14.
cAMP-dependent protein kinases have been characterized in parietal cells isolated from rabbit gastric mucosa. Both Type I and Type II cAMP-dependent protein kinase isozymes are present in these cells. Type II isozymes were detected in 900, 14,000, and 100,000 X g particulate fractions as well as 100,000 X g cytosolic fractions; Type I isozymes were found predominately in the cytosolic fraction. When parietal cells were stimulated with histamine, an agent that elevates intracellular cAMP content and initiates parietal cell HCl secretion, cAMP-dependent protein kinase activity was increased in homogenates of these cells as measured by an increase in the cAMP-dependent protein kinase activity ratio. Histamine activation of cAMP-dependent protein kinase was correlated with parietal cell acid secretory responses which were measured indirectly as increased cellular uptake of the weak base, [14C]aminopyrine. These results suggest that cAMP-dependent protein kinase(s) is involved in the control of parietal cell HCl secretion. The parietal cell response to histamine may be compartmentalized because histamine appears to activate only a cytosolic Type I cAMP-dependent protein kinase isozyme, as determined by three different techniques including 1) ion exchange chromatography; 2) Sephadex G-25 to remove cAMP and allow rapid reassociation of the Type II but not the Type I isozyme; and 3) 8-azido-[32P]cAMP photoaffinity labeling. Forskolin, an agent that directly stimulates adenylate cyclases, was found to activate both the Type I and Type II isozymes. Several cAMP-dependent protein kinases were also detected in parietal cell homogenates, including a Ca2+-phospholipid-sensitive or C kinase and two casein kinases which were tentatively identified as casein kinase I and II. At least two additional protein kinases with a preference for serine or lysine-rich histones, respectively, were also detected. The function of these enzymes in parietal cells remains to be shown.  相似文献   

15.
The regulatory (R) subunit of cAMP-dependent protein kinase I has been expressed in Escherichia coli, and oligonucleotide-directed mutagenesis was initiated in order to better understand structural changes that are induced as a consequence of cAMP-binding. Photoaffinity labeling of the type I holoenzyme with 8-azidoadenosine 3',5'-monophosphate (8-N3cAMP) leads to the covalent modification of two residues, Trp-260 and Tyr-371 [Bubis, J., & Taylor, S.S. (1987) Biochemistry 26, 3478-3486]. The site that was targeted for mutagenesis was Tyr-371. The intention was to establish whether the interactions between the tyrosine ring and the adenine ring of cAMP are primarily hydrophobic in nature or whether the hydroxyl group is critical for cAMP binding and/or for inducing conformational changes. A single base change converted Tyr-371 to Phe. This yielded an R subunit that reassociated with the catalytic subunit to form holoenzyme and bound 2 mol of cAMP/mol of R monomer. The cAMP binding properties of the holoenzyme that was formed with this mutant R subunit, however, were altered: (a) the apparent Kd(cAMP) was shifted from 16 to 60 nM; (b) Scatchard plots showed no cooperativity between the cAMP binding sites in the mutant in contrast to the positive cooperativity that is observed for the wild-type holoenzyme; (c) the Hill coefficient of 1.6 for the wild-type holoenzyme was reduced to 0.99. The Ka's for activation by cAMP were altered in the mutant holoenzyme in a manner that was proportional to the shift in Kd(cAMP).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
17.
J Bubis  S S Taylor 《Biochemistry》1985,24(9):2163-2170
Reconstituted porcine cAMP-dependent protein kinase type I was labeled with 8-azidoadenosine 3',5'-monophosphate (8-N3cAMP) to study cyclic nucleotide binding and to identify amino acid residues that are either in or in close proximity to the cAMP binding sites. The photoaffinity analogue 8-N3cAMP behaved as cAMP itself with respect to cyclic nucleotide binding. For both cAMP and 8-N3cAMP, 2 mol of nucleotide was bound per mole of type I regulatory subunit monomer (RI), the apparent Kd's observed were approximately 10-17 nM on the basis of either Millipore filtration assays, equilibrium dialysis, or ammonium sulfate precipitation, Scatchard plots showed positive cooperativity, and (4) the Hill coefficients were approximately 1.5-1.6. After photolysis and addition of an excess of cAMP, approximately 1 mol of 8-N3cAMP/mol of RI monomer was covalently incorporated. Tryptic digestion of the labeled protein revealed that two unique tryptic peptides were modified. Proline-271 and tyrosine-371 were identified as the two residues that were covalently modified by 8-N3cAMP in RI. These results contrast with the type II regulatory subunit (RII) where 8-N3cAMP modified covalently a single tyrosine residue [Kerlavage, A. R., & Taylor, S. S. (1980) J. Biol. Chem. 255, 8483-8488]. RI contains two adjacent regions of sequence homology in the COOH-terminal fragment that binds two molecules of cAMP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The complexes of pig muscle 3-phosphoglycerate kinase with the substrate MgATP and with the nonsubstrate Mg(2+)-free ATP have been characterized by binding, kinetic, and crystallographic studies. Comparative experiments with ADP and MgADP have also been carried out. In contrast to the less specific and largely ionic binding of Mg(2+)-free ATP and ADP, specific occupation of the adenosine binding pocket by MgATP and MgADP has been revealed by displacement experiments with adenosine and anions, as well as supported by isothermal calorimetric titrations. The Mg(2+)-free nucleotides similarly stabilize the overall protein structure and restrict the conformational flexibility around the reactive thiol groups of helix 13, as observed by differential scanning microcalorimetry and thiol reactivity studies, respectively. The metal complexes, however, behave differently. MgADP, but not MgATP, further increases the conformational stability with respect to its Mg(2+)-free form, which indicates their different modes of binding to the enzyme. Crystal structures of the binary complexes of the enzyme with MgATP and with ATP (2.1 and 1.9 A resolution, respectively) have shown that the orientation and interaction of phosphates of MgATP largely differ not only from those of ATP but also from the previously determined ones of either MgADP [Davies, G. J., Gamblin, S. J., Littlechild, J. A., Dauter, Z., Wilson, K. S., and Watson, H. C. (1994) Acta Crystallogr. D50, 202-209] or the metal complexes of AMP-PNP [May, A., Vas, M., Harlos, K., and Blake, C. C. F. (1996) Proteins 24, 292-303; Auerbach, G., Huber, R., Grattinger, M., Zaiss, K., Schurig, H., Jaenicke, R., and Jacob, U. (1997) Structure 5, 1475-1483] and are more similar to the interactions formed with MgAMP-PCP [Kovári, Z., Flachner, B., Náray-Szabó, G., and Vas, M. (2002) Biochemistry 41, 8796-8806]. Mg(2+) is liganded to both beta- and gamma-phosphates of ATP, while beta-phosphate is linked to the conserved Asp218, i.e., to the N-terminus of helix 8, through a water molecule; the known interactions of either MgADP or the metal complexes of AMP-PNP with the N-terminus of helix 13 and with Asn336 of beta-strand J are absent in the case of MgATP. Fluctuation of MgATP phosphates between two alternative sites has been proposed to facilitate the correct positioning of the mobile side chain of Lys215, and the catalytically competent active site is thereby completed.  相似文献   

19.
1. Ten new cAMP analogs were synthesized by replacing the purine ring with with indazole, benzimidazole or benztriazole and/or their nitro and amino derivatives. 2. Each analog proved effective in activating cAMP-dependent protein kinase I (PK-I) purified from rabbit skeletal muscle and cAMP-dependent protein kinase II (PK-II) from bovine heart and chasing 8-[3H]cAMP bound to regulatory subunits in the half-maximal effective concentrations of 2 x 10(-8)-8 x 10(-6) M. 3. The N-1-beta-D-ribofuranosyl-indazole-3'5'-cyclophosphate(I) proved a very poor chaser and activator of both isoenzymes, but when indazole was attached at its N-2 to ribose (IV) or when its H at C-4 (equivalent to the position of amino-group in adenine) was substituted by an amino-(III) or especially nitro-group (II) its efficiency was dramatically increased. 4. Analogs containing benztriazole ring proved as powerful as cAMP irrespective of the presence of substituents (VII-X). 5. Benzimidazole derivatives with amino-(VI) or nitro-group (V) activated PK-II 3 and 20 times better than PK-I. 6. Attaching of ribose to N-2 of indazole or benztriazole increased the affinity to PK-II 10 and 4 times, respectively. 7. Chasing efficiency of cAMP analogs at half-saturating [3H]cAMP tended to correlate with activating potency only for PK-I but at saturating [3H]cAMP concentration for both isoenzymes. 8. On the basis of synergistic activation with 8-Br-cAMP a site 2-selective binding of nitro-benzimidazole (V) and unsubstituted benztriazole (VII) derivatives to PK-II is suggested.  相似文献   

20.
B A Hemmings 《FEBS letters》1986,196(1):126-130
The cAMP-dependent protein kinase from LLC-PK1 cells can be activated in vivo by calcitonin and vasopressin, or forskolin. Continuous treatment of cells with these agents results in a decrease of total cAMP-PK activity. The loss of kinase activity was enhanced when either of these three agents was incubated in the presence of isobutylmethylxanthine. Results obtained using affinity purified antibodies to the catalytic subunit show that the loss of kinase was due to specific proteolysis of this subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号