首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— Diverse morphological evidence from both living and fossil taxa suggests several higher-level groupings of the Recent orders of eutherian mammals. The strongest hypotheses closely relate rodents and lagomorphs within Glires, proboscideans and sirenians within Tethytheria, hyracoids and tethytheres within Paenungulata, chiropterans and dermopterans, and pholidotans and edentates. Somewhat weaker evidence supports groupings of Glires with macroscelideans, primates and tree-shrews with bats and flying lemurs (Archonta), and all Eutheria excluding pangolins and edentates (Epitheria). There is some tenuous evidence for the monophyly of all modern ungulate orders (including cetaceans), and for the division between artiodactyls and other ungulates. Rather than providing only a confusing and unresolved picture of higher eutherian relationships, comparative morphology and paleontology offer some compelling hypotheses that comprise a framework for studies of macromolecular traits.  相似文献   

2.
The pattern of the evolutionary radiation of modern birds (Neornithes) has been debated for more than 10 years. However, the early fossil record of birds from the Paleogene, in particular, the Lower Eocene, has only recently begun to be used in a phylogenetic context to address the dynamics of this major vertebrate radiation. The Cretaceous-Paleogene (K-P) extinction event dominates our understanding of early modern bird evolution, but climate change throughout the Eocene is known to have also played a major role. The Paleocene and Lower Eocene was a time of avian diversification as a result of favourable global climatic conditions. Deteriorations in climate beginning in the Middle Eocene appear to be responsible for the demise of previously widespread avian lineages like Lithornithiformes and Gastornithidae. Other groups, such as Galliformes display replacement of some lineages by others, probably related to adaptations to a drier climate. Finally, the combination of slowly deteriorating climatic conditions from the Middle Eocene onwards, appears to have slowed the evolutionary rate in Europe, as avian faunas did not differentiate markedly until the Oligocene. Taking biotic factors in tandem with the known Paleogene fossil record of Neornithes has recently begun to illuminate this evolutionary event. Well-preserved fossil taxa are required in combination with ever-improving phylogenetic hypotheses for the inter-relationships of modern birds founded on morphological characters. One key avifauna of this age, synthesised for the first time herein, is the Lower Eocene Fur Formation of Denmark. The Fur birds represent some of the best preserved (often in three dimensions and with soft tissues) known fossil records for major clades of modern birds. Clear phylogenetic assessment of these fossils will prove critical for future calibration of the neornithine evolutionary timescale. Some early diverging clades were clearly present in the Paleocene as evidenced directly by new fossil material alongside the phylogenetically constrained Lower Eocene taxa. A later Oligocene radiation of clades other than Passeriformes is not supported by available fossil data.  相似文献   

3.
The morphological evidence for the phylogenetic relationships of euprimates, archaic primates, and related eutherian orders is reviewed following the methods of Hennigian phylogenetic systematics. Euprimates, the group including living primates and their closest common ancestor, is diagnosed by a suite of shared derived characters of the cranium and posteranium exhibiting relatively unique distributions among Eutheria. Plesiadapiformes, the group of archaic primates generally held to be the sister group to Euprimates, is not demonstrably monophyletic (with or without Microsyopidae). The Superorder Archonta (primates, tree shrews, bats, and colugos) is the only higher-level grouping including Euprimates that is based on uniquely derived morphological characters. Hypotheses of relationships within Archonta ally Euprimates with either tree shrews or some plesiadapiforms (paromomyids and plesiadapids), but the eurprimate-tree shrew clade receives more support from the distribution of derived characters among the taxa studied. Because the higher-level affinities of Euprimates are not well resolved, we advocate equating the Order Primates with the taxon Euprimates.  相似文献   

4.
Bats dispersed widely after evolving the capacity for powered flight, and fossil bats are known from the early Eocene of most continents. Until now, however, bats have been conspicuously absent from the early Eocene of mainland Asia. Here, we report two teeth from the Junggar Basin of northern Xinjiang, China belonging to the first known early Eocene bats from Asia, representing arguably the most plesiomorphic bat molars currently recognized. These teeth combine certain bat synapomorphies with primitive traits found in other placental mammals, thereby potentially illuminating dental evolution among stem bats. The Junggar Basin teeth suggest that the dentition of the stem chiropteran family Onychonycteridae is surprisingly derived, although their postcranial anatomy is more primitive than that of any other Eocene bats. Additional comparisons with stem bat families Icaronycteridae and Archaeonycteridae fail to identify unambiguous synapomorphies for the latter taxa, raising the possibility that neither is monophyletic as currently recognized. The presence of highly plesiomorphic bats in the early Eocene of central Asia suggests that this region was an important locus for the earliest, transitional phases of bat evolution, as has been demonstrated for other placental mammal orders including Lagomorpha and Rodentia.  相似文献   

5.
The grasses (Poaceae) are the fifth most diverse family of angiosperms, including 800 genera and more than 10 000 species. Few phylogenetic studies have tried to investigate palaeo‐biogeographical and palaeo‐ecological scenarios that may have led to present‐day distribution and diversity of grasses at the family level. We produced a dated phylogenetic tree based on combined plastid DNA sequences and a comprehensive sample of Poaceae. Furthermore, we produced an additional tree using a supermatrix of morphological and molecular data that included all 800 grass genera so that ancestral biogeography and ecological habitats could be inferred. We used a likelihood‐based method, which allows the estimation of ancestral polymorphism in both biogeographical and ecological analyses for large data sets. The origin of Poaceae was retrieved as African and shade adapted. The crown node of the BEP + PACCMAD clade was dated at 57 Mya, in the early Eocene. Grasses dispersed to all continents by approximately 60 million years after their Gondwanan origin in the late Cretaceous. PACCMAD taxa adapted to open habitats as early as the late Eocene, a date consistent with recent phytolith fossil data for North America. C4 photosynthesis first originated in Africa, at least for Chloridoideae in the Eocene at c. 30 Mya. The BEP clade members adapted to open habitats later than PACCMAD members; this was inferred to occur in Eurasia in the Oligocene. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2010, 162 , 543–557.  相似文献   

6.
APaleogenemammalianfauna,herenamedtheShanghuangfauna,wasdiscoverednearthevillageofShanghuang,closetoLiyangCity,JiangsuProvince,China(Fig.1).Atpresent,rouglilysixtyspeciesoffossilmammalshavebeenrecogniedintheShanghuangfauna.Manyofthesemammaltaxaarenewtoscience,andothersrepresentnewoccurrencesfortheEoceneofChina.ParticularlywellrepresentedintheShanghuangfaunaaremicromammals(includingmarsupials,insectivores,rodents,lagomorphs,primates,andbats)thathaveseldomifeverbeenfoundinotherEoceneAsianl…  相似文献   

7.
Episodes of rapid faunal turnover in the fossil record are often used to examine processes driving macroevolutionary changes, such as competitive exclusion. The sudden appearance in the earliest Eocene of North America of artiodactyls and perissodactyls, and subsequent decline of endemic “condylarths” constitutes such an episode. It has been suggested that the specializations for high speed locomotion (cursoriality) that are present in artiodactyls and perissodactyls were key innovations of these orders accounting for their success in the Eocene and onwards. A quantitative geometric morphometric analysis of distal femoral articular morphology was used to examine changes in locomotor specializations in North American ungulates across the Paleocene-Eocene boundary. “Condylarths” were found to have displayed a broad range of locomotor adaptions, including cursoriality. The early Eocene had the broadest disparity in terms of taxonomic and locomotor contributions to morphological diversity. Changes in locomotor variety were associated with the disappearance of arboreal taxa, primarily “condylarths.” The initial impact of artiodactyls and perissodactyls in North America on existing locomotor diversity was limited and does not support a competitive exclusion hypothesis.  相似文献   

8.
The Kibish faunal remains are useful for reconstructing the habitat of the earliest documented Homo sapiens and for understanding the community within which early modern humans existed. A diverse assemblage of large mammals, including many species of bovids, suids, and equids, has been recovered from the Kibish Formation. There are no extinct large mammals represented in the fossil assemblage, and the overall taxonomic composition of the fossil fauna is similar to the modern-day wildlife community living near the Omo River. The fossil faunal assemblage shows a paucity of arboreal primates, and carnivore species are rare. However, the faunal sample includes possible Cephalophus (duiker) remains and Hylochoerus meinertzhageni (giant forest hog), taxa that are extremely rare in the African fossil record, and both indicate more closed habitats. Comparative analyses of the Kibish faunal remains using the ecological-diversity approach document close associations with edaphic grassland and woodland vegetation types. These vegetation forms are similar to current habitats surrounding the Omo River.  相似文献   

9.
The evolutionary history of diatoms is only constrained partially by the fossil record. The timing of several key events, such as initial colonization of freshwater habitats by marine taxa, remains poorly resolved. Numerous specimens of the genera Cyclotella, Discostella, and Puncticulata (Ochrophyta: Thalassiosirales) have been recovered in Middle Eocene lacustrine sediments from the Giraffe Pipe locality in the Northwest Territories, Canada. These diatoms extend the fossil record of the family Stephanodiscaceae to at least 40 million years before present (Ma) and thus provide a new evolutionary milepost for the thalassiosiroid diatoms, an important clade of centric diatoms with global representation in both marine and freshwater environments. The quality of the fossil material enables detailed investigations of areolae, fultoportulae, and rimoportulae, revealing direct morphological affinities with a number of extant taxa. These observations extend the antiquity of several characters of phylogenetic importance within the thalassiosiroid diatoms, including the fultoportula, and imply that the entire lineage is considerably older than prior constraints from the fossil record, as suggested independently by several recent molecular phylogenies.  相似文献   

10.
Astragali and calcanea from the English late Eocene, attributed to the extinct 'insectivoran' family Nyctitheriidae, are described for the first time. They contrast with those of the strict sense insectivorans, the Lipotyphla, in which order nyctitheres have usually been placed, and compare more closely with those of Scandentia (tree shrews) and the extinct Plesiadapiformes. Functional analysis demonstrates that inversion of the foot was possible between the astragalus and calcaneum of nyctitheres, allowing them to be interpreted as having had a tree-dwelling, probably scansorial, mode of life. These tarsal bones are compared with those of other placental mammals. Cladistic analysis of tarsal characters places nyctitheres as sister group to the Plesiadapiformes within the superorder Archonta, excluding Chiroptera (bats). An independent analysis of dental characters places them as sister group to the rest of the Archonta, but still excluding bats. Combining the dental and tarsal characters places nyctitheres as sister group to Plesiadapiformes and all modern groups of archontans except bats. A new osteological synapomorphy is proposed for the Archonta, which is thus considered to comprise Chiroptera, Deccanolestes , Nyctitheriidae, Plesiadapiformes, Dermoptera (including Mixodectidae), Scandentia and Primates. Insectivorans s.l . have long been at the centre of arguments on placental origins, although lipotyphlans are usually regarded as a monophyletic group, rather than paraphyletic stem placentals. Reidentification of an extinct lipotyphlan family as having archontan relationships raises the possibility of advances in other areas of insectivoran phylogeny when more postcranial elements become known. The early Oligocene extinction of nyctitheres may be causally related to the rise of insectivorous microchiropteran bats, which, because of their flying ability, would have been able to forage more widely.  相似文献   

11.
According to the most recent discoveries from the Middle Eocene of Myanmar and China, anthropoid primates originated in Asia rather than in Africa, as was previously considered. But the Asian Palaeogene anthropoid community remains poorly known and inadequately sampled, being represented only from China, Myanmar, Pakistan and Thailand. Asian Eocene anthropoids can be divided into two distinct groups, the stem group eosimiiforms and the possible crown group amphipithecids, but the phylogenetic relationships between these two groups are not well understood. Therefore, it is critical to understand their evolutionary history and relationships by finding additional fossil taxa. Here, we describe a new small-sized fossil anthropoid primate from the Late Eocene Krabi locality in Thailand, Krabia minuta, which shares several derived characters with the amphipithecids. It displays several unique dental characters, such as extreme bunodonty and reduced trigon surface area, that have never been observed in other Eocene Asian anthropoids. These features indicate that morphological adaptations were more diversified among amphipithecids than was previously expected, and raises the problem of the phylogenetic relations between the crown anthropoids and their stem group eosimiiforms, on one side, and the modern anthropoids, on the other side.  相似文献   

12.
Traditionally, the morphological traits of primates were assumed to be adaptations to an arboreal way of life. However, Cartmill [1972] pointed out that a number of morphological traits characteristic of primates are not found in many other arboreal mammals. He contends that orbital convergence and grasping extremities indicate that the initial divergence of primates involved visual predation on insects in the lower canopy and undergrowth of the tropical forest. However, recent research on nocturnal primates does not support the visually-oriented predation theory. Although insects were most likely important components of the diets of the earliest euprimates, it is argued here that visual predation was not the major impetus for the evolution of the adaptive traits of primates. Recent paleobotanical research has yielded evidence that a major evolutionary event occurred during the Eocene, involving the angiosperms and their dispersal agents. As a result of long-term diffuse coevolutionary interactions with flowering plants, modern primates, bats, and plant-feeding birds all first arose around the Paleocene-Eocene boundary and became the major seed dispersers of modern tropical flora during the Eocene. Thus, it is suggested here that the multitude of resources available on the terminal branches of the newly evolved angiosperm, rain forest trees led to the morphological adaptations of primates of modern aspect.  相似文献   

13.
The Icacinaceae occur pantropically today, but are well represented by fossil fruits of the warm Early Middle Eocene, when tropical plants that currently occupy low latitudes were more widely distributed in higher latitudes. Members of this family are first known in the Late Cretaceous; however, fossil fruits of tribe Iodeae are quite rare before the Eocene. In this paper we describe the first formally recognized Late Paleocene icacinaceous taxa from western North America. We name two new species of Icacinicarya based on anatomically preserved fruits and establish a new genus, Icacinicaryites, for impressions with a strong similarity to Icacinicarya that lack anatomical preservation. These new records from the Almont/Beicegel Creek flora in North Dakota and several localities in Wyoming, Colorado, and Montana complement records known from the Early Eocene of England and document an increased diversity of Iodeae and related forms in the Paleogene of western North America.  相似文献   

14.
A tendon locking mechanism (TLM) in the digits of the feet has been described previously only in bats and birds. In bats, this mechanism typically consists of a patch of tuberculated fibrocartilage cells on the plantar surface of the proximal flexor tendons, and a corresponding plicated portion of the adjacent flexor tendon sheath. The two components mesh together like parts of a ratchet, locking the digit in a flexed position until the mechanism is disengaged. This system apparently allows bats to hang for long periods of time with reduced muscular activity. In this study, we document for the first time the presence of a similar tendon lock in dermopterans, an occurrence that provides additional support for the hypothesis that dermopterans and bats are sister taxa. The present work also includes observations on the morphology of the digital tendon system in chiropteran species not previously examined, including members of the Craseonycteridae, Mystacinidae and Kerivoulinae. Unlike other bats that have a TLM,Craseonycteris andKerivoula have a plicated proximal tendon sheath but lack distinct tubercles on the flexor tendon. This condition may be related to small body size or may represent an evolutionary intermediate between the presence of a well-developed TLM and the complete absence of this structure. Phyllostomids apparently lack the ratchet-like TLM typical of other bats, instead exhibiting modifications of the tendon sheath that may contribute to its function as a friction lock. Consideration of the distribution of TLM structures in the context of previous phylogenetic hypotheses suggests that a ratchet-type tendon lock was lost and reexpressed at least once and perhaps several times within Microchiroptera. The friction lock is an autapomorphy of Phyllostomidae.  相似文献   

15.
Coral reefs are renowned for their spectacular biodiversity and the close links between fishes and corals. Despite extensive fossil records and common biogeographic histories, the evolution of these two key groups has rarely been considered together. We therefore examine recent advances in molecular phylogenetics and palaeoecology, and place the evolution of fishes and corals in a functional context. In critically reviewing the available fossil and phylogenetic evidence, we reveal a marked congruence in the evolution of the two groups. Despite one group consisting of swimming vertebrates and the other colonial symbiotic invertebrates, fishes and corals have remarkably similar evolutionary histories. In the Paleocene and Eocene [66–34 million years ago (Ma)] most modern fish and coral families were present, and both were represented by a wide range of functional morphotypes. However, there is little evidence of diversification at this time. By contrast, in the Oligocene and Miocene (34–5.3 Ma), both groups exhibited rapid lineage diversification. There is also evidence of increasing reef area, occupation of new habitats, increasing coral cover, and potentially, increasing fish abundance. Functionally, the Oligocene–Miocene is marked by the appearance of new fish and coral taxa associated with high‐turnover fast‐growth ecosystems and the colonization of reef flats. It is in this period that the functional characteristics of modern coral reefs were established. Most species, however, only arose in the last 5.3 million years (Myr; Plio–Pleistocene), with the average age of fish species being 5.3 Myr, and corals just 1.9 Myr. While these species are genetically distinct, phenotypic differences are often limited to variation in colour or minor morphological features. This suggests that the rapid increase in biodiversity during the last 5.3 Myr was not matched by changes in ecosystem function. For reef fishes, colour appears to be central to recent diversification. However, the presence of pigment patterns in the Eocene suggests that colour may not have driven recent diversification. Furthermore, the lack of functional changes in fishes or corals over the last 5 Myr raises questions over the role and importance of biodiversity in shaping the future of coral reefs.  相似文献   

16.
The Paleogene (Paleocene-Oligocene) fossil record of birds in Europe is reviewed and recent and fossil taxa are placed into a phylogenetic framework, based on published cladistic analyses. The pre-Oligocene European avifauna is characterized by the complete absence of passeriform birds, which today are the most diverse and abundant avian taxon. Representatives of small non-passeriform perching birds thus probably had similar ecological niches before the Oligocene to those filled by modern passerines. The occurrence of passerines towards the Lower Oligocene appears to have had a major impact on these birds, and the surviving crown-group members of many small arboreal Eocene taxa show highly specialized feeding strategies not found or rare in passeriform birds. It is detailed that no crown-group members of modern 'families' are known from pre-Oligocene deposits of Europe, or anywhere else. The phylogenetic position of Paleogene birds thus indicates that diversification of the crown-groups of modern avian 'families' did not take place before the Oligocene, irrespective of their relative position within Neornithes (crown-group birds). The Paleogene fossil record of birds does not even support crown-group diversification of Galliformes, one of the most basal taxa of neognathous birds, before the Oligocene, and recent molecular studies that dated diversification of galliform crown-group taxa into the Middle Cretaceous are shown to be based on an incorrect interpretation of the fossil taxa used for molecular clock calibrations. Several taxa that occur in the Paleogene of Europe have a very different distribution than their closest extant relatives. The modern survivors of these Paleogene lineages are not evenly distributed over the continents, and especially the great number of taxa that are today restricted to South and Central America is noteworthy. The occurrence of stem-lineage representatives of many taxa that today have a restricted Southern Hemisphere distribution conflicts with recent hypotheses on a Cretaceous vicariant origin of these taxa, which were deduced from the geographical distribution of the basal crown-group members.  相似文献   

17.
The first broad-based, paleoecological analysis of a sedimentary sequence on the British chalk, dating to the terminal Pleistocene, reveals a history of climatic, vegetational and faunal change. The past co-occurrence of currently allopatric species among molluscs, beetles and plants supports hypotheses of the impermanence of communities. Modern pollen rain data are utilized to refine the ecological interpretation of the fossil pollen data. The presence of the Windermere Interstadial (Allerod) and the Loch Lomond re-advance (Younger Dryas) are represented by decreased abundances of arboreal taxa and increased representation of cold grassland elements. Open grassland habitats appear to have been a continuous landscape element, at least locally, since the late-glacial period on the northern British chal Mands, although their species composition has changed greatly in the last 11400 yr.  相似文献   

18.
The effects of faunal turnover on mammalian community structure are evaluated for 17 faunal zones of the North American Paleocene through early Eocene land mammal ages (Puercan through early Wasatchian). Generic disappearances were significantly high at the end of the Puercan, Torrejonian, and Tiffanian land mammal ages, but appearances were significantly high only during the early Puercan. Generic richness rose rapidly in the early Puercan, remained stable throughout most of the Paleocene, and increased from the late Paleocene into the early Eocene. The null hypothesis that generic turnover clustered preferentially according to dentally defined trophic or body size categories could be rejected or attributed to sampling problems for all but the early (Pu0) and late Paleocene (Ti5‐Cf2). Early Paleocene change in community structure most probably represented endemic radiation of mammals into previously unoccupied niches. Community restructuring in the late Paleocene reflected a complex of causes, including climatic wanning, intercontinental dispersal, and competition.  相似文献   

19.
Many of the oldest definitive members of the Rosaceae are present in the Eocene upland floras of the Okanogan Highlands of northeastern Washington State and British Columbia, Canada. Over a dozen rosaceous taxa representing extant and extinct genera of all four traditionally recognized subfamilies are known from flowers, fruits, wood, pollen, and especially leaves. The complexity seen in Eocene Rosaceae suggests that hybridization and polyploidy may have played a pivotal role in the early evolution of the family. Increased species diversity and the first appearance of additional modern taxa occur during the Late Paleogene in North America and Europe. The Rosaceae become increasingly important components of fossil floras during the Neogene, with taxa adapted to many habitats.  相似文献   

20.
Extant bats of the genus Emballonura have a trans-Indian Ocean distribution, with two endemic species restricted to Madagascar, and eight species occurring in mainland southeast Asia and islands in the western Pacific Ocean. Ancestral Emballonura may have been more widespread on continental areas, but no fossil identified to this genus is known from the Old World. Emballonura belongs to the subfamily Emballonurinae, which occurs in the New and Old World. Relationships of all Old World genera of this subfamily, including Emballonura and members of the genera Coleura from Africa and western Indian Ocean islands and Mosia nigrescens from the western Pacific region, are previously unresolved. Using 1833 bp of nuclear and mitochondrial genes, we reconstructed the phylogenetic history of Old World emballonurine bats. We estimated that these lineages diverged around 30 million years ago into two monophyletic sister groups, one represented by the two taxa of Malagasy Emballonura, Coleura and possibly Mosia, and the other by a radiation of Indo-Pacific Emballonura, hence, rendering the genus Emballonura paraphyletic. The fossil record combined with these phylogenetic relationships suggest at least one long-distance dispersal event across the Indian Ocean, presumably of African origin, giving rise to all Indo-Pacific Emballonura species (and possibly Mosia). Cladogenesis of the extant Malagasy taxa took place during the Quaternary giving rise to two vicariant species, E. atrata in the humid east and E. tiavato in the dry west.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号