首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Yan Z 《Molecular neurobiology》2002,26(2-3):203-216
Serotonergic neurotransmission in prefrontal cortex (PFC) plays a key role in regulating emotion and cognition under normal and pathological conditios. Increasing evidence suggests that serotonin receptors are involved in the complex regulation of GABAergic inhibitory transmission in PFC. Activation of postsynaptic 5-HT2 receptors in PFC pyramidal neurons inhibits GABAA-receptor currents via phosphorylation of GABAA receptor γ2 subunits by RACK1-anchored PKC. In contrast, activation of postsynaptic 5-HT4 receptors produces an activity-dependent bi-directional regulation of GABA-evoked currents in PFC pyramidal neurons, which is mediated through phosphorylation of GABAA-receptor β subunits by anchored PKA. On the presynaptic side, GABAergic inhibition is regulated by 5-HT through the activation of 5-HT2, 5-HT1, and 5-HT3 receptors on GABAergic intereneurons. These data provide a molecular and cellular mechanism for serotonin to dynamically regulate synaptic transmission and neuronal excitability in the PFC network, which may underlie the actions of many antidepressant and antipsychotic drugs.  相似文献   

2.
Subunit Composition and Function of GABAA Receptors of Rat Spermatozoa   总被引:1,自引:0,他引:1  
GABA triggers mammalian sperm acrosome reaction (AR). Here, evidence is presented, showing that rat spermatozoa contain GABAA receptors, composed of 5, 1 and 3 subunits. The effects of GABAA receptor agonist and antagonist on the induction of AR in rat spermatozoa were assessed using the chlortetracycline assay. Muscimol, a GABAA receptor agonist, triggered AR; whereas bicuculline, a GABAA receptor antagonist and picrotoxin, a GABAA receptor/Cl channel blocker, inhibited the ability of GABA or progesterone to induce AR. In conclusion, GABAA receptors appear to mediate the action of progesterone in inducing AR in rat spermatozoa.  相似文献   

3.
Selective blockade of a subset of GABAA receptors may be involved in the antipsychotic effects of Clozapine and several other antipsychotic drugs. Seven antipsychotic drugs, and 11 drugs classified as antidepressants that only partially reverse the inhibitory effect of 1 M GABA on [35S]TBPS binding, do not yield additive reversal when tested pairwise with Clozapine, which also only partially reverses the inhibitory effect of GABA. This suggests that all of these antipsychotic/antidepressant drugs may block a common subset of GABAA receptors. DMCM and Ro 5-4864 are also partial reversers of GABA's inhibitory effect, but they yield additive reversals when tested pairwise with the antipsychotic/antidepressant drugs, and also with each other, suggesting that DMCM, Ro 5-4864, and the antipsychotic drugs define three heterogeneous subsets of GABAA receptors, with variable overlap, depending on the drug. Several potent ligands for benzodiazepine binding sites can block the GABA inhibitory effects of DMCM and Ro 5-4864, but with different patterns: the ligands generally blocked DMCM less potently, but more completely than Ro 5-4864, Ro 5-4864 was not blocked by Flumazenil or CGS-8216, ligands that potently blocked DMCM. Nine additional antipsychotic/antidepressant drugs, as well as Clozapine, and 7 classical GABAA receptor blockers, all of which reversed GABA nearly completely, when tested at lower concentrations that only reverse 20–35%, yielded almost complete additivity when tested pairwise with DMCM or Ro 5-4864. Another convulsant benzodiazepine, KW-1937, a positional isomer of Brotizolam, fully reverses the inhibitory effect of 1 M GABA. At a lower concentration yielding about 50% reversal, KW-1937 is completely additive with DMCM, but entirely nonadditive with Ro 5-4864. The 50% reversal obtained with KW-1937 was potently blocked by Triazolam, but with a plateau similar to that obtained with Ro 5-4864. The results with KW-1937 suggest that its 50% reversal largely corresponds to the reversal obtained with Ro 5-4864, and that virtually all of the [35S]TBPS binding sites inhibited by 1 M GABA are coupled to benzodiazepine binding sites. The fraction of GABAA receptors preferentially blocked by all the antipsychotic/antidepressant drugs, roughly 25% of the [35S]TBPS binding sites inhibited with 1 M GABA, are sensitive to KW-1937, but not to DMCM or to Ro 5-4864.  相似文献   

4.
We found that Tyr-Leu (YL) dose-dependently exhibits potent anxiolytic-like activity (0.1-1 mg/kg, i.p.) comparable to diazepam in the elevated plus-maze test in mice. YL was orally active (0.3-3 mg/kg). A retro-sequence peptide or a mixture of Tyr and Leu was inactive. The anxiolytic-like activity of YL was inhibited by antagonists for serotonin 5-HT1A, dopamine D1 and GABAA receptors; however, YL had no affinity for them. We also determined the order of their activation is 5-HT1A, D1 and GABAA receptors using selective agonists and antagonists. Taken together, YL may exhibit anxiolytic-like activity via activation of 5-HT1A, D1 and GABAA receptors.  相似文献   

5.
The widely used atypical antipsychotic clozapine is a potent competitive antagonist at 5-HT3 receptors which may contribute to its unique psychopharmacological profile. Clozapine binds to 5-HT3 receptors of various species. However, the structural requirements of the respective binding site for clozapine remain to be determined. Differences in the primary sequences within the 5-HT3A receptor gene in schizophrenic patients may result in an alteration of the antipsychotic potency and/or the side effect profile of clozapine. To determine these structural requirements we constructed chimeras with different 5-HT3A receptor sequences of murine and human origin and expressed these mutants in human embryonic kidney (HEK) 293 cells. Clozapine antagonises recombinant mouse 5-HT3A receptors with higher potency compared to recombinant human 5-HT3A receptors. 5-HT activation curves and clozapine inhibition curves yielded the parameters EC50 and IC50 for all receptors tested in the range of 0.6–2.7 µM and 1.5–83.3 nM, respectively. The use of the Cheng-Prusoff equation to calculate the dissociation constant Kb values for clozapine revealed that an extracellular sequence (length 86 aa) close to the transmembrane domain M1 strongly determines the binding affinity of clozapine. Kb values of clozapine were significantly lower (0.3–1.1 nM) for receptors containing the murine sequence and higher when compared with receptors containing the respective human sequence (5.8–13.4 nM). Thus, individual differences in the primary sequence of 5-HT3 receptors may be crucial for the antipsychotic potency and/or the side effect profile of clozapine.  相似文献   

6.
Midbrain slices containing the dorsal and medial raphe nuclei were prepared from rat brain in order to study serotonergic-GABAergic interaction. The slices were loaded with either [3H] serotonin or [3H]GABA, superfused and the electrically induced efflux of radioactivity was determined. The GABAA receptor agonist muscimol (3 to 30 M) and the GABAB receptor agonist baclofen (30 and 100 M) inhibited [3H]serotonin and [3H]GABA release. These effects of muscimol were reversed by the GABAA antagonists bicuculline (100 M). The GABAB antagonist phaclofen (100 M) also antagonized the baclofen-induced inhibition of [3H]serotonin and [3H]GABA release. Phaclofen by itself increased [3H]serotonin release but it did not alter [3H]GABA overflow. Muscimol (10 M) and baclofen (100 M) also inhibited [3H]serotonin release after depletion of GABAergic neurons by isoniazid pretreatment. These findings indicate the presence of postsynaptic GABAA and GABAB receptors located on serotonergic neurons. The 5-HT1A receptor agonist 8-OH-DPAT (0.01 to 1 M) and the 5-HT1B receptor agonist CGS-12066A (0.01 to 1 M) inhibited the electrically stimulated [3H]serotonin and [3H]GABA release. The 5-HT1A antagonist WAY-100135 (1 M) was without effect on [3H]serotonin and [3H]GABA efflux by itself but it reversed the 8-OH-DPAT-induced transmitter release inhibition. During KCl (22 mM)-induced depolarization, tetrodotoxin (1 M) did not alter the inhibitory effect of CGS-12066A (1 M) on [3H]GABA release, it did blocked, however, the ability of 8-OH-DPAT (1 M) to reduce [3H]GABA efflux. After depletion of raphe serotonin neurons by p-chlorophenylalanine pretreatment, CGS-12066A (1 M) still inhibited [3H]GABA release whereas in serotonin-depleted slices, 8-OH-DPAT (1 M) was without effect on the release. We conclude that reciprocal influence exists between serotonergic projection neurons and the GABAergic interneurons or afferents in the raphe nuclei and these interactions may be mediated by 5-HT1A/B and GABAA/B receptors. Both synaptic and non-synaptic neurotransmission may be operative in the 5-HTergic-GABAergic reciprocal interaction which may serve as a local tuning in the neural connection between cerebral cortex and midbrain raphe nuclei.  相似文献   

7.
Clozapine and several other antipsychotic/antidepressant drugs that fully or partially block GABAA receptors were tested at concentrations that reversed the inhibitory effect of 1 M GABA on 35S-t-butylbicyclophosphorothionate ([35S]TBPS) binding to rat forebrain membranes only about 20–30%, here designated core fractions. Clozapine at 10 M reverses 1 M GABA 25 ± 4.0% (n = 23) (its core fraction). Fourty three compounds were tested alone, and pairwise together with 10 M Clozapine. The core fractions of some of the compounds yielded significant additive reversals together with 10 M Clozapine, while others did not. A group of 14 compounds of which 7 are clinically effective antipsychotic drugs, including Chlorprothixene, Clomacran, Clopipazan, Fluotracen, Sulforidazine, Thioproperazine, and cis-Thiothixene, were statistically non-additive with 10 M Clozapine, suggesting that all of these drugs selectively block the same core population of GABAA receptors as Clozapine. These non-additivities also suggest that Clozapine at 10 M fully saturates a subset of GABAA receptors blocked by 1 M GABA. Therefore, Clozapine probably blocks 2 or more types of GABAA receptors, but only half of the receptors that are sensitive to 1 M GABA. A second group of 12 compounds of which 6 are clinically active antidepressant/antipsychotic drugs including Amoxapine, Clothiapine, Dibenzepine, Inkasan (Metralindole), Metiapine and Zimelidine were slightly, but significantly, additive with Clozapine suggesting that these compounds block most of Clozapine's core fraction, plus a small additional fraction. A third group consisted of ten compounds that yielded larger (R > 80) and statistically highly significant additivities with Clozapine. Complete additivity was obtained with Bathophenanthroline disulfonate, and Isocarboxazid, suggesting that they block GABAA receptors other than those blocked by 10 M Clozapine. Seven classical GABAA receptor blockers, also tested at concentrations yielding 21 to 33% reversal alone, were all significantly additive with 10 M Clozapine, but in no case was the additivity complete. The largest additivity was obtained with Pitrazepine (21%) and the smallest with Tubocurarine (9%). These results provide further support for the notion that selective blockade of the same subset of GABAA receptors may contribute to the clinical antipsychotic/antidepressant effects of Clozapine. The Bopt values for Clozapine are 50 ± 1.7% and 26 ± 2.6% ( n = 3) in whole rat forebrain and cerebellum, respectively, confirming that clozapine-sensitive GABAA receptors are unevenly distributed in the brain. The sedative and anxiolytic properties of Clozapine and other antipsychotic drugs may be due to selective blockade of GABergic disinhibition at certain interneurons.  相似文献   

8.

Background

Magnolia bark preparations from Magnolia officinalis of Asian medicinal systems are known for their muscle relaxant effect and anticonvulsant activity. These CNS related effects are ascribed to the presence of the biphenyl-type neolignans honokiol and magnolol that exert a potentiating effect on GABAA receptors. 4-O-methylhonokiol isolated from seeds of the North-American M. grandiflora was compared to honokiol for its activity to potentiate GABAA receptors and its GABAA receptor subtype-specificity was established.

Methods

Different recombinant GABAA receptors were functionally expressed in Xenopus oocytes and electrophysiological techniques were used determine to their modulation by 4-O-methylhonokiol.

Results

3 μM 4-O-methylhonokiol is shown here to potentiate responses of the α1β2γ2 GABAA receptor about 20-fold stronger than the same concentration of honokiol. In the present study potentiation by 4-O-methylhonokiol is also detailed for 12 GABAA receptor subtypes to assess GABAA receptor subunits that are responsible for the potentiating effect.

Conclusion

The much higher potentiation of GABAA receptors at identical concentrations of 4-O-methylhonokiol as compared to honokiol parallels previous observations made in other systems of potentiated pharmacological activity of 4-O-methylhonokiol over honokiol.

General significance

The results point to the use of 4-O-methylhonokiol as a lead for GABAA receptor potentiation and corroborate the use of M. grandiflora seeds against convulsions in Mexican folk medicine.  相似文献   

9.
The presence of serotonin 5-HT1A receptors and their physiological role were further characterized in the goldfish retina. The effects of the 5-HT6/7 receptor antagonists pimozide, fluphenazine and amoxapine, the 5-HT1A receptor antagonist WAY-100,135, and the alkylating agent N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline, on the 5-HT1A receptor agonist [3H]8-hydroxy-2-(di-n-propylamino)tetralin binding to retinal membranes, were evaluated. In addition, the effects of serotonin, 8-hydroxy-2-(di-n-propylamino)tetralin, WAY-100,135, the adenylate cyclase inhibitors SQ22536 and MDL12330A, and the cyclic AMP analog 8-bromoadenosine-3:5 cyclic monophosphate were also studied on neuritic outgrowth from retinal explants. WAY-100,135 but not 5-HT6/7receptor antagonists inhibited [3H]8-hydroxy-2-(di-n-propylamino)tetralin binding to retinal membranes N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline decreased [3H]8-hydroxy-2-(di-n-propylamino)tetralin binding sites up to 70%, while receptor turnover was similar to that reported in other tissues. Serotonin and 8-hydroxy-2-(di-n-propylamino)tetralin stimulated cyclic AMP production, both ex vivo and in vitro, and these increases were related to inhibition of neuritic outgrowth. The inhibitory effect was reduced by SQ22536 and by WAY-100,135, and was mimicked by 8-bromoadenosine-3:5cyclic monophosphate. This study supports previous findings about the role of serotonin as a regulator of axonal outgrowth during in vitro regeneration of the goldfish retina and demonstrates that this effect is mediated, at least in part, by 5-HT1A receptors through a mechanism which involves an increase of cyclic AMP levels.  相似文献   

10.
Studies were carried out to determine whether barbiturates and neurosteroids share common recognition sites at the GABAA receptor complex in avian CNS. To achieve this, differentially prepared fresh and frozen synaptic membranes were used. Both the barbiturate, pentobarbital, and the neurosteroid, 3-hydroxy-5-pregnan-20-one, were able to stimulate GABA binding in both types of membranes. Stimulation differed markedly when both drugs were added jointly to different treated tissue. In frozen membranes drugs acted synergistically and were differentially displaced by picrotoxinin, while in fresh ones, where both compounds were inhibited by the convulsant, this additivity was absent. Post-freezing wash supernatants were collected and used as a source of putative endogenous factors involved in the above mentioned membrane differences. Addition of a high molecular weight fraction from supernatants to frozen synaptic membranes led to an inhibition of barbiturate and neurosteroid potentiation, as well as a loss of their additive effect. Our results indicate that GABAA receptor modulation by barbiturates and neurosteroids is affected by synaptic membrane treatment, with a common modulatory site in fresh membranes and separate recognition sites after a freeze-thawing procedure. There may also be endogenous factors involved in overlapping of modulatory sites, which would thus regulate GABAA receptor functionality by direct interaction with the complex.  相似文献   

11.
de la Mora  M. Pérez  Ferré  S.  Fuxe  K. 《Neurochemical research》1997,22(8):1051-1054
Recent evidence has shown in membrane preparations that the binding of one ligand to its receptor is able to modify the binding parameters of a second receptor (receptor-receptor interactions), allowing the modulation of incoming signals onto a neuron. To further understand the -amino-butyric acid (GABA)-dopamine (DA) interactions in the neostriatum we have carried out experiments to explore whether an activation of the GABAA receptor could affect the binding characteristics of the D2 DA receptor in membrane preparations of the rat neostriatum. The results show that GABA (30–100 nM) significantly increases the dissociation constant of the high affinity (KH) D2 DA binding site (labelled with the selective D2 DA receptor antagonist [3H]raclopride and that such an effect is fully counteracted by the GABAA receptor antagonist bicuculline (1 M). It is suggested that such putative GABAA/D2 receptor-receptor interactions may take place in the somato-dendritic membrane of the striato-pallidal GABA neurons and that it may modulate the inhibitory effects of DA on these neurons, mediated via D2 receptors.  相似文献   

12.
The GABAA Receptor Complex as a Target for Fluoxetine Action   总被引:3,自引:0,他引:3  
Tunnicliff  G.  Schindler  N. L.  Crites  G. J.  Goldenberg  R.  Yochum  A.  Malatynska  E. 《Neurochemical research》1999,24(10):1271-1276
The clinically important antidepressant fluoxetine is established as a selective serotonin reuptake inhibitor. This study demonstrates that fluoxetine also interacts with the GABAA receptor complex. At concentrations above 10 M fluoxetine inhibited the binding of both [3H]GABA (IC50 = 2 mM) and [3H]flunitrazepam (IC50 = 132 M ) to the GABAA receptor complex in brain cortical membranes. Low fluoxetine concentrations (1 nM) enhanced GABA-stimulated Cl uptake by a rat cerebral cortical vesicular preparation. At higher concentrations (100 M and 1 mM), however, fluoxetine inhibited GABA-stimulated Cl uptake, an effect related to a reduction in Emax. These observations might assist in an explanation of the basis of the antidepressant action of fluoxetine.  相似文献   

13.
Onion (Allium cepa L.) plants were examined to determine the photosynthetic role of CO2 that accumulates within their leaf cavities. Leaf cavity CO2 concentrations ranged from 2250 L L–1 near the leaf base to below atmospheric (<350 L L–1) near the leaf tip at midday. There was a daily fluctuation in the leaf cavity CO2 concentrations with minimum values near midday and maximum values at night. Conductance to CO2 from the leaf cavity ranged from 24 to 202 mol m–2 s–1 and was even lower for membranes of bulb scales. The capacity for onion leaves to recycle leaf cavity CO2 was poor, only 0.2 to 2.2% of leaf photosynthesis based either on measured CO2 concentrations and conductance values or as measured directly by 14CO2 labeling experiments. The photosynthetic responses to CO2 and O2 were measured to determine whether onion leaves exhibited a typical C3-type response. A linear increase in CO2 uptake was observed in intact leaves up to 315 L L–1 of external CO2 and, at this external CO2 concentration, uptake was inhibited 35.4±0.9% by 210 mL L–1 O2 compared to 20 mL L–1 O2. Scanning electron micrographs of the leaf cavity wall revealed degenerated tissue covered by a membrane. Onion leaf cavity membranes apparently are highly impermeable to CO2 and greatly restrict the refixation of leaf cavity CO2 by photosynthetic tissue.Abbreviations Ca external CO2 concentration - Ci intercellular CO2 concentration - CO2 compensation concentration - PPFR photosynthetic photon fluence rate  相似文献   

14.
Using whole cell patch-clamp recordings from pyramidal cells acutely dissociated from rat hippocampal slices, Ro-15 1788 (flumazenil, FLU) was shown to enhance the GABAA-receptor mediated currents evoked by application of -aminobutyric acid (GABA) and to antagonize the enhancing effect of the benzodiazepine agonist flurazepam (FZP) on the GABAA response. Both FLU and FZP increased the peak and the steady-state components of the responses and accelerated the current decay. This suggests that both agents act via a common mechanism on GABA transmission. It is concluded that FLU possesses high affinity for the binding site, but low efficacy on the GABAA-benzodiazepine receptor. This suggests that FLU acts as a partial agonist on GABAA receptors.  相似文献   

15.
The effects were studied of short-term (1 week) versus long-term (2-3 weeks) fluoxetine treatment of primary cultures of mouse astrocytes, differentiated by treatment with dibutyryl cyclic AMP. From previous experiments it is known that acute treatment with fluoxetine stimulates glycogenolysis and increases free cytosolic Ca2+ concentration ([Ca2+]i]) in these cultures, whereas short-term (one week) treatment with 10 M down-regulates the effects on glycogen and [Ca2+]i, when fluoxetine administration is renewed (or when serotonin is administered). Moreover, antagonist studies have shown that these responses are evoked by activation of a 5-HT2 receptor that is different from the 5-HT2A receptor and therefore at that time tentatively were interpreted as being exerted on 5-HT2C receptors. In the present study the cultures were found by RT-PCR to express mRNA for 5-HT2A and 5-HT2B receptors, but not for the 5-HT2C receptor, identifying the 5-HT2 receptor activated by fluoxetine as the 5-HT2B receptor, the most recently cloned 5-HT2 receptor and a 5-HT receptor known to be more abundant in human, than in rodent, brain. Both short-term and long-term treatment with fluoxetine increased the specific binding of [3H]mesulergine, a ligand for all three 5-HT2 receptors. Long-term treatment with fluoxetine caused an agonist-induced up-regulation of the glycogenolytic response to renewed administration of fluoxetine, whereas short-term treatment abolished the fluoxetine-induced hydrolysis of glycogen. Thus, during a treatment period similar to that required for fluoxetine's clinical response to occur, 5-HT2B-mediated effects are initially down-regulated and subsequently up-regulated.  相似文献   

16.
The serotonin1A (5-HT1A) receptors are important members of the superfamily of seven transmembrane domain G-protein coupled receptors. They appear to be involved in various behavioral, cognitive and developmental functions. Mammalian cells in culture heterologously expressing membrane receptors represent convenient systems to address problems in receptor biology. We report here the pharmacological characterization of one of the first isolated clones of CHO cells stably expressing the human 5-HT1A receptor using the selective agonist 8-OH-DPAT and antagonist p-MPPF. In addition, we demonstrate that agonist and antagonist binding to the receptor exhibit differential sensitivity to the non-hydrolyzable GTP analogue, GTP--S, as was observed earlier with the native receptor from bovine hippocampus. These results show that the human 5-HT1A receptor expressed in CHO cells displays characteristic features found in the native receptor isolated from bovine hippocampus and promises to be a potentially useful system for future studies of the receptor.These authors have contributed equally to the work  相似文献   

17.
SUMMARY 1. The serotonin1A (5-HT1A) receptors are members of a superfamily of seven-transmembrane-domain receptors that couple to G-proteins. They appear to be involved in various behavioral and cognitive functions. Mutagenesis and modeling studies point out that the ligand-binding sites in serotonin receptors are located in the transmembrane domain. However, these binding sites are not very well characterized. Since disulfide bonds and sulfhydryl groups have been shown to play vital roles in the assembly, organization, and function of various G-protein-coupled receptors, we report here the effect of disulfide and sulfhydryl group modifications on the agonist and antagonist binding activity of 5-HT1A receptors from bovine hippocampus.2. DTT or NEM treatment caused a concentration-dependent reduction in specific binding of the agonist and antagonist in 5-HT1A receptors from bovine hippocampal native and solubilized membranes. This is supported by a concomitant reduction in binding affinity.3. Pretreatment of the receptor with unlabeled ligands prior to chemical modifications indicate that the majority of disulfides or sulfhydryl groups that undergo modification giving rise to inhibition in binding activity could be at the vicinity of the ligand-binding sites.4. In addition, ligand-binding studies in presence of GTP--S, a nonhydrolyzable analogue of GTP, indicate that sulfhydryl groups (and disulfide bonds to a lesser extent) are vital for efficient coupling between the 5-HT1A receptor and the G-protein.5. Our results point out that disulfide bonds and sulfhydryl groups could play an important role in ligand binding in 5-HT1A receptors.  相似文献   

18.
Neuroactive steroids and other positive modulators of GABAA receptors showed regional variation in both the efficacy and potency for modulation of [35S]TBPS binding to rat brain membrane homogenates, with biphasic concentration-dependence. GABA present in the binding assays prevented the enhancement phase of the steroid concentration-dependence plot while the antagonists bicuculline and RU5135 prevented the inhibition phase. Using recombinant GABAA receptors, expressed in insect cell line Sf9 using baculovirus, enhancement by steroids of [35S]TBPS binding was sensitive to the presence of the 2 subunit and the nature of the subunit (122S > 12, 62, 622S, and 62). As in cerebellum, addition of RU5135 reduced the inhibitory phase and revealed a small enhancement of TBPS binding by neuroactive steroids. The subunit-dependent interactions of steroid and GABA site ligands are consistent with a three-state model in which the receptor mono-liganded by GABA or steroid has a different affinity for TBPS than the resting state, and the receptor biliganded by GABA, steroid, or both has little affinity for TBPS.  相似文献   

19.
[35S]t-Butylbicyclophosphorothionate ([35S]TBPS), a convulsant site ligand of GABAA receptors, was used in autoradiography with rat brain sections to test suggested receptor subtype-selective actions of antiepileptics phenytoin, carbamazepine and loreclezole on native GABAA receptors. At maximal 100 M concentration, both phenytoin and carbamazepine decreased [35S]TBPS binding only by 20%, indicating that their low potency and efficacy prevents their use as 1 subunit-identifying compounds. Ten M loreclezole did not affect the binding, but a further increase in loreclezole concentration strongly decreased it. The action of loreclezole, assumed to reflect 2/3 subunit-containing receptors, varied from brain region to region, but the effects were unrelated to the regional expression profiles of subunit variants. We conclude that in autoradiographic [35S]TBPS binding assay neither carbamazepine, phenytoin nor loreclezole are useful tools in characterizing brain regional heterogeneity of GABAA receptors in rats and that only loreclezole exhibits high, pharmacologically relevant efficacy.  相似文献   

20.
1. The serotonin type 1A (5-HT1A) receptors are members of a superfamily of seven transmembrane domain receptors that couple to GTP-binding regulatory proteins (G-proteins). We have studied the modulation of agonist binding to 5-HT1A receptors from bovine hippocampus by metal ions and guanine nucleotide.2. Bovine hippocampal membranes containing the 5-HT1A receptor were isolated. These membranes exhibited high-affinity binding sites for the specific agonist [3H]OH-DPAT.3. The agonist binding is inhibited by monovalent cations Na+, K+, and Li+ in a concentration-dependent manner. Divalent cations such as Ca2+, Mg2+, and Mn2+, on the other hand, show more complex behavior and induce enhancement of agonist binding up to a certain concentration. The effect of the metal ions on agonist binding is strongly modulated in the presence of GTP--S, a nonhydrolyzable analogue of GTP, indicating that these receptors are coupled to G-proteins.4. To gain further insight into the mechanisms of agonist binding to bovine hippocampal 5-HT1A receptors under these conditions, the binding affinities and binding sites have been analyzed by Scatchard analysis of saturation binding data. Our results are relevant to ongoing analyses of the overall regulation of receptor activity for G-protein-coupled seven transmembrane domain receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号