首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
重组大肠杆菌在诱导表达人表皮生长因子的过程促使细菌的生长受到抑制,一部分重组菌丧失了分裂能力,但仍保持着一定的代谢活力,分离成为存活但不能培养的细菌,根据大肠杆菌在表达外源蛋白过程中细胞生理状态的不同将细菌分为三类,提出一个描述诱导表达过程中重组大肠杆菌分离、生长的动力学模型.应用遗传算法对不同底物浓度的细胞生长、分离和产物合成的动力学参数进行了有效地估计,避免了传统算法可能陷于局部最优的问题,模型计算结果与实验结果吻合良好.分离模型在初始糖浓为5-20g/L的范围内可以较好地描述发酵过程中细胞生长、分离和目标产物表达的过程并具有一定的预测能力.  相似文献   

2.
The aerobic fed-batch production of recombinant human growth hormone (rhGH) by Escherichia coli was studied. The goal was to determine the production and protein degradation pattern of this product during fed-batch cultivation and to what extent scale differences depend on the presence of a fed-batch glucose feed zone. Results of laboratory bench-scale, scale-down (SDR), and industrial pilot-scale (3-m(3)) reactor production were compared. In addition to the parameters of product yield and quality, also cell yield, respiration, overflow, mixed acid fermentation, glucose concentration, and cell lysis were studied and compared. The results show that oxygen limitation following glucose overflow was the critical parameter and not the glucose overflow itself. This was verified by the pattern of byproduct formation where formate was the dominating factor and not acetic acid. A correlation between the accumulation of formate, the degree of heterogeneity, and cell lysis was also visualized when recombinant protein was expressed. The production pattern could be mimicked in the SDR reactor for all parameters, except for product quantity and quality, where 30% fewer rhGH-degraded forms were present and where about 80% higher total yield was achieved, resulting in 10% greater accumulation of properly formed rhGH monomer.  相似文献   

3.
A mathematical model was formulated to simulate cell growth, plasmid loss and recombinant protein production during the aerobic culture of a recombinant yeast S. cerevisiae. Model development was based on three simplified metabolic events in the yeast: glucose fermentation, glucose oxidation and ethanol oxidation. Cell growth was expressed as a composite of these metabolic events. Their contributions to the total specific growth rate depended on the activities of the pacemaker enzyme pools of the individual pathways. The pacemaker enzyme pools were regulated by the specific glucose uptake rate. The effect of substrate concentrations on the specific growth rate was described by a modified Monod equation. It was assumed that recombinant protein formation is only associated with oxidative pathways. Plasmid loss kinetics was formulated based on segregational instability during cell division by assuming constant probability of plasmid loss. Experiments on batch fermentation of recombinant S. cerevisiae C468/pGAC9 (ATCC 20690), which expresses Aspergillus awamori glucoamylase gene and secretes glucoamylase into the extracellular medium, were carried out in an airlift bioreactor in order to evaluate the proposed model. The model successfully predicted the dynamics of cell growth, glucose consumption, ethanol metabolism, glucoamylase production and plasmid instability. Excellent agreement between model simulations and our experimental data was achieved. Using published experimental data, model agreement was also found for other recombinant yeast strains. In general, the proposed model appears to be useful for the design, scale-up, control and optimization of recombinant yeast bioprocesses.  相似文献   

4.
As Escherichia coli (E. coli) is well defined with respect to its genome and metabolism, it is a favored host organism for recombinant protein production. However, many processes for recombinant protein production run under suboptimal conditions caused by wrong or incomplete information from an improper screening procedure, because appropriate on-line monitoring systems are still lacking. In this study, the oxygen transfer rate (OTR), determined on-line in shake flasks by applying a respiration activity monitoring system (RAMOS) device, was used to characterize the metabolic state of the recombinant organisms. Sixteen clones of E. coli SCS1 with foreign gene sequences, encoding for different target proteins, were cultivated in an autoinduction medium, containing glucose, lactose, and glycerol, to identify relationships between respiration activity and target protein production. All 16 clones showed a remarkably different respiration activity, biomass, and protein formation under induced conditions. However, the clones could be classified into three distinct types, and correlations could be made between OTR patterns and target protein production. For two of the three types, a decrease of the target protein was observed, after the optimal harvest time had passed. The acquired knowledge was used to modify the autoinduction medium to increase the product yield. Additional 1.5 g/L glucose accelerated the production process for one clone, shifting the time point of the maximal product yield from 24 to 17 h. For another clone, lactose addition led to higher volumetric product yields, in fact 25 and 38% more recombinant protein for 2 and 6 g/L additional lactose, respectively.  相似文献   

5.
The study of batch kinetics of Lactococcus lactis cell growth and product formation reveals three distinct metabolic behaviors depending upon the availability of oxygen to the culture and the presence of hemin in the medium. These three cultivation modes, anerobic homolactic fermentation, aerobic heterolactic fermentation, and hemin-stimulated respiration have been studied at pH 6.0 and 30 degrees C with a medium containing a high concentration of glucose (60 g/L). A maximum cell density of 5.78 g/L was obtained in the batch culture under hemin-stimulated respiration conditions, about three times as much as that achieved with anerobic homolactic fermentation (1.87 g/L) and aerobic heterolactic fermentation (1.80 g/L). The maximum specific growth rate was 0.60/h in hemin-stimulated respiration, slightly higher than that achieved in homolactic fermentation (0.56/h) and substantially higher than that in heterolactic fermentation (0.40/h). Alteration of metabolism caused by the supplementation of oxygen and hemin is evidenced by changes in both cell growth kinetics and metabolite formation kinetics, which are characterized by a unique pseudo-diauxic growth of L. lactis. We hypothesise that Lactococcus lactis generates bioenergy (ATP) through simultaneous lactate formation and hemin-stimulated respiration in the primary exponential phase, when glucose is abundant, and utilizes lactate for cell growth and cell maintenance in the stationary phase, after glucose is exhausted. We also examined the applicability of a modified logistic model and the Luedeking-Piret model for cell growth kinetics and metabolite formation kinetics, respectively.  相似文献   

6.
An astaxanthin-producing yeast Xanthophyllomyces dendrorhous ENM5 was cultivated in a liquid medium containing 50 g/L glucose as the major carbon source in stirred fermentors (1.5-L working volume) in fully aerobic conditions. Ethanol was produced during the exponential growth phase as a result of overflow metabolism or fermentative catabolism of glucose by yeast cells. After accumulating to a peak of 3.5 g/L, the ethanol was consumed by yeast cells as a carbon source when glucose in the culture was nearly exhausted. High initial glucose concentrations and ethanol accumulation in the culture had inhibitory effects on cell growth. Astaxanthin production was partially associated with cell growth. Based on these culture characteristics, we constructed a modified Monod kinetic model incorporating substrate (glucose) and product (ethanol) inhibition to describe the relationship of cell growth rate with glucose and ethanol concentrations. This kinetic model, coupled with the Luedeking-Piret equation for the astaxanthin production, gave satisfactory prediction of the biomass production, glucose consumption, ethanol formation and consumption, and astaxanthin production in batch cultures over 25-75 g/L glucose concentration ranges. The model was also applied to fed-batch cultures to predict the optimum feeding scheme (feeding glucose and corn steep liquor) for astaxanthin production, leading to a high volumetric yield (28.6 mg/L) and a high productivity (5.36 mg/L/day).  相似文献   

7.
The role played by glucose in providing energy for acid formation was studied in isolated gastric glands from rabbit. The widely-used inhibitors of glycolysis, iodoacetic acid and iodoacetamide were found to inhibit glucose oxidation as well as the indicators of acid formation, respiration and accumulation of aminopyrine. However, the potent inhibition of acid formation was found to involve a nonspecific mechanism other than the simple inhibition of glycolysis. An alternative approach involved use of the glucose transport inhibitor, phloretin. Phloretin blocked glucose oxidation and also inhibited functional responses. Acid formation was restored easily by the addition of pyruvate or various other oxidizable substrates. Measurement of lactate formation in the absence of exogenous glucose showed that the gastric glands contain very little glycogen. Addition of external glucose resulted in a 10-fold increase in lactate formation and this rate was stimulated further by histamine and rotenone. Rotenone also inhibited both respiration and aminopyrine accumulation; however, the inhibition was not complete. Phloretin treatment resulted in total inhibition of the residual aminopyrine accumulation after rotenone treatment. The results are interpreted to indicate that gastric glands are dependent almost totally on external substrate supply to support acid formation; and, that while anaerobic glucose metabolism can sustain a very low level of acid formation, the major role of glucose is to yield pyruvate equivalents for subsequent oxidation.  相似文献   

8.
A fed-batch process for the high cell density cultivation of E. coli TG1 and the production of the recombinant protein phenylalanine dehydrogenase (PheDH) was developed. A model based on Monod kinetics with overflow metabolism and incorporating acetate utilization kinetics was used to generate simulations that describe cell growth, acetate production and reconsumption, and glucose consumption during fed-batch cultivation. Using these simulations a predetermined feeding profile was elaborated that would maintain carbon-limited growth at a growth rate below the critical growth rate for acetate formation (mu < mu(crit)). Two starvation periods are incorporated into the feed profile in order to induce acetate utilization. Cell concentrations of 53 g dry cell weight (DCW)/L were obtained with a final intracellular product concentration of recombinant protein corresponding to approximately 38% of the total cell protein. The yield of PheDH was 129 U/mL with a specific activity of 1.2 U/mg DCW and a maximum product formation rate of 0.41 U/mg DCW x h. The concentration of aectate was maintained below growth inhibitory levels until 3 h before the end of the fermentation when the concentration reached a maximum of 10.7 g/L due to IPTG induction of the recombinant protein.  相似文献   

9.
The influence of dilution rate on the production of biomass, ethanol, and invertase in an aerobic culture of Saccharomyces carlsbergensis was studied in a glucose-limited chemostat culture. A kinetic model was developed to analyze the biphasic growth of yeast on both the glucose remaining and the ethanol produced in the culture. The model assumes a double effect where glucose regulates the flux of glucose catabolism (respiration and aerobic fermentation) and the ethanol utilization in yeast cells. The model could successfully demonstrate the experimental results of a chemostat culture featuring the monotonic decrease of biomass concentration with an increase of dilution rate higher than 0.2 hr?1 as well as the maximum ethanol concentration at a particular dilution rate around 0.5 hr?1. Some supplementary data were collected from an ethanol-limited aerobic chemostat culture and a glucose-limited anaerobic chemostat culture to use in the model calculation. Some parametric constants of cell growth, ethanol production, and invertase formation were determined in batch cultures under aerobic and anaerobic states as summarized in a table in comparison with the chemostat data. Using the constants, a prediction of the optimal control of a glucose fed-batch yeast culture was conducted in connection with an experiment for harvesting a high yield of yeast cells with high invertase activity.  相似文献   

10.
In order to investigate the impact of high oxygen and carbon dioxide concentrations, Escherichia coli was grown in batch cultivations where the air supply was enriched with either oxygen or carbon dioxide. The effect of elevated concentrations of oxygen and carbon dioxide on stochiometric and kinetic constants was studied this way. The maximum growth rate was significantly reduced, the production of acetic acid and the biomass yield coefficient on glucose increased in cultures with carbon dioxide enriched air, compared to reference cultivations and cultivations with oxygen enriched air. The application of oxygen enriched air was studied in high cell density cultivations of Escherichia coli. Two production processes were chosen to investigate the impact of oxygen enrichment. Biomass concentration, specific growth rate, yield coefficient, respiration, mixed acid fermentation products and the product yield and quality for the recombinant product were investigated. First, a process for the production of biomass was investigated. Exponential growth could proceed for a longer time and higher growth rates could be maintained with oxygen enriched air supply. However, a higher specific oxygen consumption rate per glucose was measured after the start of the oxygen enrichment, indicating higher maintenance and consequently the growth rate and yield coefficient decreased drastically in the end of the process. Second, a process for the production of recombinant human growth hormone (rhGH) was investigated. Although the glucose feed rate and all medium components were doubled, the amount of produced biomass could only be increased by 77% when oxygen enriched air (40% oxygen) supply was applied. This was due to a decreased yield coefficient of biomass per glucose. The total amount of produced product was decreased by almost 50% compared to the control, although less proteolytically degraded variants were produced.  相似文献   

11.
Summary This study highlights data about the production of a recombinant protein (glyceraldehyde-3-phosphate dehydrogenase) byE. coli HB 101 (GAPDH) during batch and fed-batch fermentations in a complex medium. From a small number of experiments, this strain has been characterized in terms of protein production performance and glucose and acetate influences on growth and recombinant protein production. The present results show that this strain is suitable for recombinant protein production, in fed-batch culture 55 g L–1 of biomass and 6 g L–1 of GAPDH are obtained. However this strain, and especially GAPDH overproduction is sensitive to glucose availability. During fermentations, maximum yields of GAPDH production have been obtained in batch experiments for glucose concentration of 10 g L–1, and in fed-batch experiments for glucose availability of 10 g h–1 (initial volume 1.5 L). The growth of the strain and GAPDH overproduction are also inhibited by acetate. Moreover acetate has been noted as an activator of its own formation.  相似文献   

12.
The specific rates of growth, substrate utilization, and ethanol production as well as yields of biomass and ethanol production on xylose for the recombinant Zymomonas mobilis ZM4(pZB5) were shown to be much less than those on glucose or glucose-xylose mixtures. Typical fermentations with ZM4(pZB5) growing on glucose-xylose mixtures followed two-phase growth kinetics with the initial uptakes of glucose and xylose being followed by slower growth and metabolic uncoupling on xylose after glucose depletion. The reductions in rates and yields from xylose metabolism were considered in the present investigation and may be due to a number of factors, including the following: (i) the increased metabolic burden from maintenance of plasmid-related functions, (ii) the production of by-products identified as xylitol, acetate, lactate, acetoin, and dihydroxyacetone by (13)C-nuclear magnetic resonance (NMR) spectroscopy and high-performance liquid chromatography, (iii) growth inhibition due to xylitol by the putative inhibitory compound xylitol phosphate, and (iv) the less energized state of ZM4(pZB5). In vivo (31)P-NMR studies have established that the levels of NTP and UDP sugars on xylose were less than those on glucose, and this energy limitation is likely to restrict the growth of the recombinant strain on xylose media.  相似文献   

13.
A model was formulated to examine specific experimental data of growth and heterologous product formation with recombinant Saccharomyces cerevisiae while incorporating available literature. The model simulated dry cell weight, glucose, ethanol, dissolved oxygen, human Epidermal Growth Factor (hEGF) production, fraction of recombinant cells, oxygen uptake rate, and carbon dioxide production rate for batch, fed batch, and hollow fiber bioreactor configurations. Nineteen differential equations, 24 analytical equations, and 48 parameters were required. Due to the lack of detailed studies needed for the ADH-II and the TCA enzyme pool, 8 of the 48 parameters were adjustable. Simulation results are presented for verification of the model which successfully described the observed phenomena for the fermentations of S. cerevisiae strain AB103. 1 pYalphaEF-25. Also presented is a statistical analysis of the model's fit and model parameter sensitivity.  相似文献   

14.
Escherichia coli is commonly used for recombinant protein production with many available host strains. Screening experiments are often performed in batch mode using shake flasks and evaluating only the final product concentration. This conventional approach carries the risk of missing the best strain due to limited monitoring capabilities. Thus, this study focuses on investigating the general suitability of online respiration measurement for selecting expression hosts for heterologous protein production. The oxygen transfer rate (OTR) for different T7‐RNA polymerase‐dependent Escherichia coli expression strains was compared under inducing and noninducing conditions. As model enzymes, a lipase A from Bacillus subtilis (BSLA) and a 3‐hydroxybutyryl‐CoA dehydrogenase from Thermus thermophilus (HBD) were chosen. Four strains were compared during expression of both enzymes in autoinduction medium. Additionally, four strains were compared during expression of the BSLA with IPTG induction. It was found that the metabolic burden during recombinant protein production induces a phase of constant OTR, while undisturbed cell growth with no or little product formation is indicated by an exponential increase. This pattern is independent of the host strain, expressed enzyme, and induction method. Furthermore, the OTR gives information about carbon source consumption, biomass formation, and the transition from production to noninduced second growth phase, thereby ensuring a fair comparison of different strains. In conclusion, online monitoring of the respiration activity is suited to qualitatively identify, if a recombinant protein is produced by a strain or not. Furthermore, laborious offline sampling is avoided. Thus, the technique is easier and faster compared to conventional approaches. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:315–327, 2018  相似文献   

15.
The specific rates of growth, substrate utilization, and ethanol production as well as yields of biomass and ethanol production on xylose for the recombinant Zymomonas mobilis ZM4(pZB5) were shown to be much less than those on glucose or glucose-xylose mixtures. Typical fermentations with ZM4(pZB5) growing on glucose-xylose mixtures followed two-phase growth kinetics with the initial uptakes of glucose and xylose being followed by slower growth and metabolic uncoupling on xylose after glucose depletion. The reductions in rates and yields from xylose metabolism were considered in the present investigation and may be due to a number of factors, including the following: (i) the increased metabolic burden from maintenance of plasmid-related functions, (ii) the production of by-products identified as xylitol, acetate, lactate, acetoin, and dihydroxyacetone by 13C-nuclear magnetic resonance (NMR) spectroscopy and high-performance liquid chromatography, (iii) growth inhibition due to xylitol by the putative inhibitory compound xylitol phosphate, and (iv) the less energized state of ZM4(pZB5). In vivo 31P-NMR studies have established that the levels of NTP and UDP sugars on xylose were less than those on glucose, and this energy limitation is likely to restrict the growth of the recombinant strain on xylose media.  相似文献   

16.
Recombinant Saccharomyces cerevisiae YPB-G strain secreting a fusion protein displaying both BsAAase/GAase activities was grown in 1.5 l YPS media containing single (starch) and mixed carbon sources (glucose+starch) using a 2.5 l New Brunswick BiofloIII fermenter. Ethanol and biomass formation, starch utilisation, secretion of the amylolytic enzymes (-amylase and glucoamylase), accumulation of reducing sugars and glucose were followed during the fermentation of YPB-G under different conditions. Moreover, a model has been developed for the growth of recombinant yeast on substitutable substrates using cybernetic framework principles and incorporating product formation. In the present work, both the biphasic and the diauxic growth patterns observed experimentally in batch culture of recombinant yeast cells were simulated successfully by modifying the cybernetic framework to include ethanol formation and the degradation kinetics of starch which is not directly utilised by yeast. The model can further be expanded to fed-batch systems.  相似文献   

17.
Summary Glucose supplements to complex growth media of Escherichia coli affect the production of a recombinant model protein under the control of a temperature-sensitive expression system. The bacterial Crabtree effect, which occurs in the presence of glucose under aerobic conditions, not only represses the formation of citric acid cycle enzymes, but also represses the formation of the plasmid-encoded product even though the synthesis of this protein is under the control of the temperature-inducible lambda P R-promoter/cl857-repressor expression system. When the recombinant E. coli is grown at a moderate temperature (35° C) with protein hydrolysate and glucose as substrates, a biphasic growth and production pattern is observed. In the first phase, the cells grow with a high specific growth rate, utilizing glucose and forming glutamate as a byproduct. The intracellular level of recombinant protein is very low in this phase. Later, glutamate is consumed, indicating an active citric acid cycle. The degradation of glutamate is accompanied by the intracellular accumulation of high amounts of recombinant protein.  相似文献   

18.
The relationships between mitochondrial respiration, reactive oxygen species (ROS), and life span are complex and remain controversial. Inhibition of the target of rapamycin (TOR) signaling pathway extends life span in several model organisms. We show here that deletion of the TOR1 gene extends chronological life span in Saccharomyces cerevisiae, primarily by increasing mitochondrial respiration via enhanced translation of mtDNA-encoded oxidative phosphorylation complex subunits. Unlike previously reported pathways regulating chronological life span, we demonstrate that deletion of TOR1 delays aging independently of the antioxidant gene SOD2. Furthermore, wild-type and tor1 null strains differ in life span only when respiration competent and grown in normoxia in the presence of glucose. We propose that inhibition of TOR signaling causes derepression of respiration during growth in glucose and that the subsequent increase in mitochondrial oxygen consumption limits intracellular oxygen and ROS-mediated damage during glycolytic growth, leading to lower cellular ROS and extension of chronological life span.  相似文献   

19.
Modelling Xanthomonas campestris batch fermentations in a bubble column   总被引:1,自引:0,他引:1  
Rate and yield expressions relating to biomass and xanthan formation and to nitrogen, glucose, and oxygen consumption were established for Xanthomonas campestris batch fermentations in a bubble column. Microbial growth was described by the logistic rate equation, characterized by a maximum specific growth rate mu(M) = 0.5 h(-1) and a maximum attainable cell concentration provided by nitrogenous compounds. With regard to carbon metabolism, the decrease with time in experimental yields and in the experimental specific rates of xanthan production and glucose assimilation demonstrated the inadequacy of the Luedeking-Piret model. These decreases were connected to the simultaneous drop in dissolved-oxygen tension observed during xanthan synthesis. The knowledge of metabolic pathways and energetic balance were used to establish the relationships between substrate utilization, ATP generation, and xanthan production. The model was structured by assuming the oxygen limitation of both the respiration rate and the efficiency of the oxidative phosphorylation mechanism (P/O ratio). Consequently, the specific rates and yield expressions became dependent on the dissolved-oxygen tension, i.e., of the volumetric oxygen transfer in the fermentor.  相似文献   

20.
Acetate accumulation under aerobic conditions is a common problem in Escherichia coli cultures, as it causes a reduction in both growth rate and recombinant protein productivity. In this study, the effect of replacing the glucose phosphotransferase transport system (PTS) with an alternate glucose transport activity on growth kinetics, acetate accumulation and production of two model recombinant proteins, was determined. Strain VH32 is a W3110 derivative with an inactive PTS. The promoter region of the chromosomal galactose permease gene galP of VH32 was replaced by the strong trc promoter. The resulting strain, VH32GalP+ acquired the capacity to utilize glucose as a carbon source. Strains W3110 and VH32GalP+ were transformed for the production of recombinant TrpLE-proinsulin accumulated as inclusion bodies (W3110-PI and VH32GalP+-PI) and for production of soluble intracellular green fluorescent protein (W3110-pV21 and VH32GalP+-pV21). W3110-pV21 and VH32GalP+-pV21 were grown in batch cultures. Maximum recombinant protein concentration, as determined from fluorescence, was almost four-fold higher in VH32GalP+-pV21, relative to W3110-pV21. Maximum acetate concentration reached 2.8 g/L for W3110-pV21 cultures, whereas a maximum of 0.39 g/L accumulated in VH32GalP+-pV21. W3110-PI and VH32GalP+-PI were grown in batch and fed-batch cultures. Compared to W3110-PI, the engineered strain maintained similar production and growth rate capabilities while reducing acetate accumulation. Specific glucose consumption rate was lower and product yield on glucose was higher in VH32GalP+-PI fed-batch cultures. Altogether, strains with the engineered glucose uptake system showed improved process performance parameters for recombinant protein production over the wild-type strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号