首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of dihydropyridine calcium agonists and antagonists on 45Ca2+ uptake into primary neuronal cell cultures was investigated. K+ stimulated neuronal 45Ca2+ accumulation in a concentration dependent manner. This effect was further enhanced by the calcium agonists Bay K 8644 and (+)-(S)-202-791 with EC50 values of 21 nM and 67 nM respectively. The calcium antagonists PN 200-110 and (-)-(R)-202-791 inhibited Bay K 8644 (1 microM) stimulated uptake with IC50 values of 20 nM and 130 nM respectively. 45Ca2+ efflux from neuronal cells was measured in the presence and absence of Na+. Efflux occurred at a much greater rate from cells incubated in the presence of Na+, indicating the existence of an active Na+/Ca2+ exchanger in these neurons. The data suggests that voltage sensitive calcium channels of these neurons are sensitive to dihydropyridines and thus that dihydropyridine binding sites have a functional role in these neuronal cultures.  相似文献   

2.
The two dihydropyridine enantiomers, (+)202-791 and (-)202-791, that act as voltage-sensitive Ca2+ channel agonist and antagonist, respectively, were examined for effects on cytosolic Ca2+ concentrations ([Ca2+]i) and on hormones secretion in dispersed bovine parathyroid cells and a rat medullary thyroid carcinoma (rMTC) cell line. In both cell types, small increases in the concentration of extracellular Ca2+ evoked transient followed by sustained increases in [Ca2+]i, as measured with fura-2. Increases in [Ca2+]i obtained by raised extracellular Ca2+ were associated with a stimulation of secretion of calcitonin (CT) and calcitonin gene-related peptide (CGRP) in rMTC cells, but an inhibition of secretion of parathyroid hormone (PTH) in parathyroid cells. The Ca2+ channel agonist (+)202-791 stimulated whereas the antagonist (-)202-791 inhibited both transient and sustained increases in [Ca2+]i induced by extracellular Ca2+ in rMTC cells. Secretion of CT and CGRP was correspondingly enhanced and depressed by (+)202-791 and (-)202-791, respectively. In contrast, neither the agonist nor the antagonist affected [Ca2+]i and PTH secretion in parathyroid cells. Depolarizing concentrations of extracellular K+ increased [Ca2+]i and hormone secretion in rMTC cells and both these responses were potentiated or inhibited by the Ca2+ channel agonist or antagonist, respectively. The results suggest a major role of voltage-sensitive Ca2+ influx in the regulation of cytosolic Ca2+ and hormones secretion in rMTC cells. Parathyroid cells, on the other hand, appear to lack voltage-sensitive Ca2+ influx pathways and regulate PTH secretion by some alternative mechanism.  相似文献   

3.
The interaction of large depolarization and dihydropyridine Ca2+ agonists, both of which are known to enhance L-type Ca2+ channel current, was examined using a conventional whole-cell clamp technique. In guinea pig detrusor cells, only L-type Ca2+ channels occur. A second open state (long open state: O2) of the Ca2+ channels develops during large depolarization (at +80 mV, without Ca2+ agonists). This was judged from lack of inactivation of the Ca2+ channel current during the large depolarizing steps (5 s) and slowly deactivating inward tail currents (= 10-15 ms) upon repolarization of the cell membrane to the holding potential (-60 mV). Application of Bay K 8644 (in 2.4 mM Ca(2+)- containing solutions) increased the amplitude of the Ca2+ currents evoked by simple depolarizations, and made it possible to observe inward tail currents (= 2.5-5 ms at -60 mV). The open state induced by large depolarization (O2*) in the Bay K 8644 also seemed hardly to inactivate. After preconditioning with large depolarizing steps, the decay time course of the inward tail currents upon repolarization to the holding potential (-60 mV) was significantly slowed, and could be fitted reasonably with two exponentials. The fast and slow time constants were 10 and 45 ms, respectively, after 2 s preconditioning depolarizations. Qualitatively the same results were obtained using Ba2+ as a charge carrier. Although the amplitudes of the inward currents observed in the test step and the subsequent repolarization to the holding potential were decreased in the same manner by additional application of nifedipine (in the presence of Bay K 8644), the very slow deactivation time course of the tail current was little changed. The additive enhancement by large depolarization and Ca2+ agonists of the inward tail current implies that two mechanisms separately induce long opening of the Ca2+ channels: i.e., that there are four open states.  相似文献   

4.
The alpha 1-subunit of the voltage-dependent L-type Ca2+ channel has distinct, allosterically coupled binding domains for drugs from different chemical classes (dihydropyridines, benzothiazepines, phenylalkylamines, diphenylbutylpiperidines). (-)-BM 20.1140 (ethyl-2,2-di-phenyl-4-(1-pyrrolidino)-5-(2-picolyl)- oxyvalerate) is a novel Ca2+ channel blocker which potently stimulates dihydropyridine binding (K0.5 = 2.98 nM) to brain membranes. This property is shared by (+)-cis-diltiazem, (+)-tetrandrine, fostedil and trans-diclofurime, but (-)-BM 20.1140 does not bind in a competitive manner to the sites labeled by (+)-cis-[3H]diltiazem. (+)-cis-Diltiazem and (-)-BM 20.1140 have differential effects on the rate constants of dihydropyridine binding. (+)-BM 20.1140 reverses the stimulation of the positive allosteric regulators (pA2 value for reversal of (-)-BM 20.1140 stimulation = 7.4, slope 0.72). The underlying molecular mechanism of the potentiation of dihydropyridine binding has been clarified. The K0.5 for free Ca2+ to stabilize a high affinity binding domain for dihydropyridines on purified L-type channels from rabbit skeletal muscle is 300 nM. (+)-Tetrandine (10 microM) increases the affinity 8-fold (K0.5 for free Ca2+ = 30.1 nM) and (+)-BM 20.114 (10 microM) inhibits the affinity increase (K0.5 for free Ca2+ = 251 nM). Similar results were obtained with membrane-bound Ca(2+)-channels from brain tissue which have higher affinity for free Ca2+ (K0.5 for free Ca2+ = 132 nM) and for dihydropyridines compared with skeletal muscle. It is postulated that the dihydropyridine and Ca(2+)-binding sites are interdependent on the alpha 1-subunit, that the different positive heterotropic allosteric regulators (by their differential effects on Ca2+ rate constants) optimize coordination for Ca2+ in the channel pore and, in turn, increase affinity for the dihydropyridines.  相似文献   

5.
The effects of the three dihydropyridine calcium channel agonists (+/-)BAY K 8644, (+)202-791 and (+/-)CGP 28392 on 45Ca++ uptake were studied in cultures of rabbit aortic smooth muscle cells. At 10(-7) M each agonist enhanced 45Ca++ uptake in 15-50 mM K+ but had no effect on the basal 45Ca++ uptake at 5 mM K+. At the uptake threshold of 15 mM K+ each agonist potentiated 45Ca++ uptake in a dose-dependent manner with half maximal effects at 2.4 nM for (+/-)BAY K 8644, 22 nM for (+)202-791 and 18 nM for (+/-)CGP 28392. The agonists showed no significant antagonistic activity. Responses were antagonized competitively by nifedipine and non-competitively by (+/-)D-600. The 45Ca++ uptake dose-response curves and the half maximal effects of the three agonists were over the same range of concentrations as their inhibition of [3H]nitrendipine binding to rat ventricular receptor membrane preparations. The data suggest that these cells mimic the calcium uptake by the intact aorta better than commercial vascular smooth muscle lines or cardiac cells.  相似文献   

6.
Depolarization of differentiated neuroblastoma X glioma (NG108-15) cells with KCl (50 mM) or veratridine (50 microM) stimulated Ca2+ accumulation, was detected by quin 2 fluorescence. Intracellular Ca2+ concentrations ([Ca2+]i) were elevated about threefold from 159 +/- 7 to 595 +/- 52 nM (n = 12). Ca2+ entry evoked by high extracellular K+ concentration ([K+]o) was voltage-dependent and enhanced by the dihydropyridine agonists, BAY K 8644 and CGP 28 392, in a dose-dependent manner. CGP 28 392 was less potent and less efficacious than BAY K 8644. The (+) and (-) stereoisomers of 202-791 showed agonist and antagonist properties, respectively. (+)-202-791 was less potent, but as efficacious as BAY K 8644. In the absence of KCl, BAY K 8644 had no effect on Ca2+ entry. Voltage-sensitive calcium channel (VSCC) activity was blocked by organic Ca2+ channel antagonists (nanomolar range) both before and after KCl treatment and also by divalent metal cations (micromolar range). High [K+]o-induced Ca2+ accumulation was dependent on external Ca2+, but not on external Na+ ions ([Na]o), and was insensitive to both tetrodotoxin (3 microM) and tetraethylammonium (10 microM). In contrast, veratridine-induced Ca2+ accumulation required [Na+]o, and was blocked by tetrodotoxin, but not by nimodipine (1 microM). Veratridine-induced Ca2+ accumulation was slower (approximately 45 s), smaller in magnitude (approximately 30% of [K+]o-induced Ca2+ entry), and also enhanced by BAY K 8644 (approximately 50%). VSCC were identified in neuronal hybrid (NG108-15 and NCB-20) cells, but not in glial (C6BU-1), renal epithelial (MDCK), and human astrocytoma (1321N1) cells. NG108-15 cells differentiated with 1.0 mM dibutyryl cyclic AMP showed greater VSCC activity than undifferentiated cultures. These results suggest that cultured neural cells provide a useful system to study Ca2+ regulation via ion channels.  相似文献   

7.
8.
It has been shown on the frog auricle fibres by the method of double sucrose bridge that the dependence of the effect of dihydropyridine Ca agonists BAYK 8644, CGP 28 392 and (-S)202 = 791 on calcium channels on the membrane potential is to a large extent due to the activation and following inactivation of Ca channels "silent" in the control. This effect takes place due to a shift by Ca agonists of the stationary curve of channel activation to hyperpolarization. The absence of stimulus-dependence of the agonist effect and constant time of Ca current reactivation suggest that the agonists bind with resting channels.  相似文献   

9.
Strong depolarization and dihydropyridine agonists potentiate inward currents through native L-type Ca2+ channels, but the effect on outward currents is less clear due to the small size of these currents. Here, we examined potentiation of wild-type alpha1C and two constructs bearing mutations in conserved glutamates in the pore regions of repeats II and IV (E2A/E4A-alpha1C) or repeat III (E3K-alpha1C). With 10 mM Ca2+ in the bath and 110 mM Cs+ in the pipette, these mutated channels, expressed in dysgenic myotubes, produced both inward and outward currents of substantial amplitude. For both the wild-type and mutated channels, we observed strong inward rectification of potentiation: strong depolarization had little effect on outward tail currents but caused the inward tail currents to be larger and to decay more slowly. Similarly, exposure to DHP agonist increased the amplitude of inward currents and decreased the amplitude of outward currents through both E2A/E4A-alpha1C and E3K-alpha1C. As in the absence of drug, strong depolarization in the presence of dihydropyridine agonist had little effect on outward tail currents but increased the amplitude and slowed the decay of inward tail currents. We tested whether cytoplasmic Mg2+ functions as the blocking particle responsible for the rectification of potentiated L-type Ca2+ channels. However, even after complete removal of cytoplasmic Mg2+, (-)BayK 8644 still potentiated inward current and partially blocked outward current via E2A/E4A-alpha1C. Although zero Mg2+ did not reveal potentiation of outward current by DHP agonist, it did have two striking effects, (a) a strong suppression of decay of both inward and outward currents via E2A/E4A-alpha1C and (b) a nearly complete elimination of depolarization-induced potentiation of inward tail currents. These results can be explained by postulating that potentiation exposes a binding site in the pore to which an intracellular blocking particle can bind and produce inward rectification of the potentiated channels.  相似文献   

10.
GH3 cells showed spontaneous rhythmic oscillations in intracellular calcium concentration ([Ca2+]i) and spontaneous prolactin release. The L-type Ca2+ channel inhibitor nimodipine reduced the frequency of Ca2+ oscillations at lower concentrations (100nM-1 microM), whereas at higher concentrations (10 microM), it completely abolished them. Ca2+ oscillations persisted following exposure to thapsigargin, indicating that inositol 1,4,5-trisphosphate-sensitive intracellular Ca2+ stores were not required for spontaneous activity. The K+ channel inhibitors Ba2+, Cs+, and tetraethylammonium (TEA) had distinct effects on different K+ currents, as well as on Ca2+ oscillations and prolactin release. Cs+ inhibited the inward rectifier K+ current (KIR) and increased the frequency of Ca2+ oscillations. TEA inhibited outward K+ currents activated at voltages above -40 mV (grouped within the category of Ca2+ and voltage-activated currents, KCa,V) and increased the amplitude of Ca2+ oscillations. Ba2+ inhibited both KIR and KCa,V and increased both the amplitude and the frequency of Ca2+ oscillations. Prolactin release was increased by Ba2+ and Cs+ but not by TEA. These results indicate that L-type Ca2+ channels and KIR channels modulate the frequency of Ca2+ oscillations and prolactin release, whereas TEA-sensitive KCa,V channels modulate the amplitude of Ca2+ oscillations without altering prolactin release. Differential regulation of these channels can produce frequency or amplitude modulation of calcium signaling that stimulates specific pituitary cell functions.  相似文献   

11.
Four glutamate residues residing at corresponding positions within the four conserved membrane-spanning repeats of L-type Ca(2+) channels are important structural determinants for the passage of Ca(2+) across the selectivity filter. Mutation of the critical glutamate in Repeat III in the a 1S subunit of the skeletal L-type channel (Ca(v)1.1) to lysine virtually eliminates passage of Ca(2+) during step depolarizations. In this study, we examined the ability of this mutant Ca(v)1.1 channel (SkEIIIK) to conduct inward Na(+) current. When 150 mM Na(+) was present as the sole monovalent cation in the bath solution, dysgenic (Ca(v)1.1 null) myotubes expressing SkEIIIK displayed slowly-activating, non-inactivating, nifedipine-sensitive inward currents with a reversal potential (45.6 ± 2.5 mV) near that expected for Na(+). Ca(2+) block of SkEIIIK-mediated Na(+) current was revealed by the substantial enhancement of Na(+) current amplitude after reduction of Ca(2+) in the external recording solution from 10 mM to near physiological 1 mM. Inward SkEIIIK-mediated currents were potentiated by either ±Bay K 8644 (10 mM) or 200-ms depolarizing prepulses to +90 mV. In contrast, outward monovalent currents were reduced by ±Bay K 8644 and were unaffected by strong depolarization, indicating a preferential potentiation of inward Na(+) currents through the mutant Ca(v)1.1 channel. Taken together, our results show that SkEIIIK functions as a non-inactivating, junctionally-targeted Na(+) channel when Na(+) is the sole monvalent cation present and urge caution when interpreting the impact of mutations designed to ablate Ca(2+) permeability mediated by Ca(v) channels on physiological processes that extend beyond channel gating and permeability.  相似文献   

12.
The effects of rat parathyroid hormone-related protein (rPTHrP) and bovine and rat parathyroid hormone (bPTH and rPTH) on L-type Ca2+ channels in UMR 106 cells were investigated using the patch clamp technique. rPTHrP increased the whole cell L-type Ca2+ channel currents and the increase was concentration dependent. rPTHrP, at a concentration of 62.5 nM, increased the L-type Ca2+ channel current by 122+/-25%. bPTH was less potent. A concentration of 7.5 microM bPTH increased the current by 99+/-24%. Results obtained with rPTH were similar to those obtained using bPTH. Single channel measurements, using the cell-attached version of the patch clamp technique, showed an increase in both the number of channel openings and the mean open time when the cells were exposed to rPTHrP. This suggested that rPTHrP affected the gating of L-type Ca2+ channels in UMR 106 cells. This study demonstrates that the actions of bPTH and rPTHrP in UMR cells are mediated in part by extracellular Ca2+ entry. PTHrP, a paracrine agent important in development, is more potent in regulating Ca2+ entry than PTH.  相似文献   

13.
We have examined the ability of BI (class A) Ca2+ channels, cloned from rabbit brain, to mediate excitation-contraction (E-C) coupling in skeletal muscle. Expression plasmids carrying cDNA encoding BI channels were microinjected into the nuclei of dysgenic mouse myotubes grown in primary culture. Ionic currents and intramembrane charge movements produced by the BI channels were recorded using the whole-cell patch- clamp technique. Injected myotubes expressed high densities of ionic BI Ca2+ channel current (average 31 pA/pF) but did not display spontaneous contractions, and only very rarely displayed evoked contractions. The expressed ionic current was pharmacologically distinguished from the endogenous L-type current of dysgenic skeletal muscle (Idys) by its insensitivity to the dihydropyridine antagonist (+)-PN 200-110. Peak BI Ca2+ currents activated with a time constant (tau a) of approximately 2 ms and inactivated with a time constant (tau h) of approximately 260 ms (20-23 degrees C). The time constant of inactivation (tau h) was not increased by substituting Ba2+ for Ca2+ as charge carrier, demonstrating that BI channels expressed in dysgenic myotubes do not undergo Ca(2+)-dependent inactivation. The average maximal Ca2+ conductance (Gmax) produced by the BI channels was quite large (approximately 534 S/F). In contrast, the average maximal charge movement (Qmax) produced in the same myotubes (approximately 2.7 nC/microF) was quite small, being barely larger than Qmax in control dysgenic myotubes (approximately 2.3 nC/microF). Thus, the ratio Gmax/Qmax for the BI channels was considerably higher than previously found for cardiac or skeletal muscle L-type Ca2+ channels expressed in the same system, indicating that neuronal BI Ca2+ channels exhibit a much higher open probability than these L-type Ca2+ channels.  相似文献   

14.
Regulation of ionic channels plays a pivotal role in controlling cardiac function. Here we show that the Rho family of small G proteins regulates L-type Ca2+ currents in ventricular cardiomyocytes. Ventricular myocytes isolated from transgenic (TG) mice that overexpress the specific GDP dissociation inhibitor Rho GDI-alpha exhibited significantly decreased basal L-type Ca2+ current density (approximately 40%) compared with myocytes from nontransgenic (NTG) mice. The Ca2+ channel agonist BAY K 8644 and the beta-adrenergic agonist isoproterenol increased Ca2+ currents in both NTG and TG myocytes to a similar maximal level, and no changes in mRNA or protein levels were observed in the Ca2+ channel alpha1-subunits. These results suggest that the channel activity but not the expression level was altered in TG myocytes. In addition, the densities of inward rectifier and transient outward K+ currents were unchanged in TG myocytes. The amplitudes and rates of basal twitches and Ca2+ transients were also similar between the two groups. When the protein was delivered directly into adult ventricular myocytes via TAT-mediated protein transduction, Rho GDI-alpha significantly decreased Ca2+ current density, which supports the idea that the defective Ca2+ channel activity in TG myocytes was a primary effect of the transgene. In addition, expression of a dominant-negative RhoA but not a dominant-negative Rac-1 or Cdc42 also significantly decreased Ca2+ current density, which indicates that inhibition of Ca2+ channel activity by overexpression of Rho GDI-alpha is mediated by inhibition of RhoA. This study points to the L-type Ca2+ channel activity as a novel downstream target of the RhoA signaling pathway.  相似文献   

15.
B S Marinov  M E Saxon 《FEBS letters》1985,186(2):251-254
Interaction of Ca2+-channel antagonists (felodipine, ryocidil, verapamil, diltiazem) and agonists (dihydropyridine derivatives Bay K 8644 and CGP 28392) was studied by the methods of absorption spectroscopy. Ca2+-channel antagonists were found to act as electron donors, the agonists being electron acceptors in the interaction with dye free radicals in solution. Redox transitions in channel-forming protein were proposed as a possible mechanism of the modulation of channel activity by the compounds tested.  相似文献   

16.
Smooth muscle cells from rat aorta were cultured in defined, serum-free medium and studied using whole-cell patch-clamp techniques. Under conditions designed to isolate currents through Ca channels, step depolarizations produced inward currents which were fast in onset and inactivated rapidly, with little sustained inward current being observed. Both Ni and Cd blocked these currents, with Ni being effective at 50 microM. Removal of external Na or addition of 1 microM tetrodotoxin had no effect. Peak inward currents were attained at about -15 mV, with half-maximal activation at -41 mV using -80 mV holding potentials. The transient inward currents were reduced by depolarized holding potentials, with half-maximal steady-state inactivation at -48 mV. In three of the 98 cells studied, small maintained inward currents were observed with a -40 mV holding potential. The Ca channel antagonist nicardipine (5 microM) blocked the transient inward current while neither of the dihydropyridine Ca channel agonists S(+)202 791 and (-)BAY K 8644 produced a significant augmentation of sustained inward current. At 10 microM, both noradrenaline and adrenaline but not phenylephrine decreased the peak inward current. This inhibition was unaffected by a variety of adrenoceptor antagonists and was also observed when internal solutions having high Ca buffering capacity were used, but was absent when GDP-beta-S instead of GTP was included in the pipette solution. The main conclusions from this study are that under our cell culture conditions, rat aortic smooth muscle cells possess predominantly a transient, low-threshold-activated inward Ca current and that this Ca current is inhibited by certain adrenoceptor agonists but with a quite atypical adrenoceptor antagonist pharmacology.  相似文献   

17.
Prior observations have raised the possibility that dihydropyridine (DHP) agonists directly affect the sarcoplasmic reticulum (SR) cardiac Ca(2+) release channel [i.e., ryanodine receptor (RyR)]. In single-channel recordings of purified canine cardiac RyR, both DHP agonists (-)-BAY K 8644 and (+)-SDZ202-791 increased the open probability of the RyR when added to the cytoplasmic face of the channel. Importantly, the DHP antagonists nifedipine and (-)-SDZ202-791 had no competitive blocking effects either alone or after channel activation with agonist. Thus there is a stereospecific effect of SDZ202-791, such that the agonist activates the channel, whereas the antagonist has little effect on channel activity. Further experiments showed that DHP agonists changed RyR activation by suppressing Ca(2+)-induced inactivation of the channel. We concluded that DHP agonists can also influence RyR single-channel activity directly at a unique allosteric site located on the cytoplasmic face of the channel. Similar results were obtained in human purified cardiac RyR. An implication of these data is that RyR activation by DHP agonists is likely to cause a loss of Ca(2+) from the SR and to contribute to the negative inotropic effects of these agents reported by other investigators. Our results support this notion that the negative inotropic effects of DHP agonists result in part from direct alteration in the activity of RyRs.  相似文献   

18.
Huang MH  Wu SN  Chen CP  Shen AY 《Life sciences》2002,70(10):1185-1203
Quinones have been shown to possess antineoplastic activity; however, their effects on ionic currents remain unclear. The effects of 2-mercaptophenyl-1,4-naphthoquinone (2-MPNQ), menadione (MD) and 1,4-naphthoquinone (1,4 NQ) on cell proliferation and ionic currents in pituitary GH3 lactotrophs were investigated in this study. 2-MPNQ was more potent than menadione or 1,4-naphthoquinone in inhibiting the growth of GH3 cells. 2-MPNQ decreased cell proliferation in a concentration-dependent manner with an IC50 value of 3 microM. In whole-cell recording experiments, 2-MPNQ reversibly caused an inhibition of Ca2+-activated K+ current (I(K(Ca)) in a concentration-dependent manner. The IC50 value for 2-MPNQ-induced inhibition of I(K(Ca)) was 7 microM. In the inside-out configuration of single channel recording, 2-MPNQ (30 microM) applied intracellularly suppressed the activity of large-conductance Ca2+-activated K+ (BK(Ca)) channels but did not modify single channel conductance. Menadione (30 microM) had no effect on the channel activity, whereas 1,4-naphthoquinone (30 microM) suppressed it by about 26%. Both 2-MPNQ and thimerosal suppressed the dithiothreitol-stimulated channel activity. 2-MPNQ also blocked voltage-dependent K+ currents, but it produced a slight reduction of L-type Ca2+ inward current. However, unlike E-4031, 2-MPNQ (30 microM) did not suppress inwardly rectifying K+ current present in GH3 cells. Under the current clamp configuration, the presence of 2-MPNQ (30 microM) depolarized the cells, and increased the frequency and duration of spontaneous action potentials. The 2-MPNQ-mediated inhibition of K+ currents would affect hormone secretion and cell excitability. The blockade of these ionic channels by 2-MPNQ may partly explain its inhibitory effect on the proliferation of GH3 cells.  相似文献   

19.
Efonidipine is a dihydropyridine Ca2+ antagonist with inhibitory effects on both L-type and T-type Ca2+ channels and potent bradycardiac activity especially in patients with high heart rate. In the present study, we examined the frequency dependence of efonidipine action on the T-type Ca2+ channel in isolated guinea-pig ventricular myocytes. The potency of efonidipine to inhibit the T-type Ca2+ current was higher under higher stimulation frequencies. The IC50 values were 1.3 x 10(-8), 2.0 x 10(-6) and 6.3 x 10(-6) M under stimulation frequencies of 1, 0.2 and 0.05 Hz, respectively. The reduction of T-type Ca2+ current amplitude was not accompanied by change in the time course of current decay. Efonidipine (10 microM) inhibited T-type Ca2+ current elicited by depolarization from holding potentials ranging from -90 to -30 mV by about 30%; the voltage-dependence of steady-state inactivation was not changed by the drug. Efonidipine slowed the recovery from inactivation following an inactivating prepulse. In conclusion, efonidipine was shown to have frequency-dependent inhibitory effects on the T-type Ca2+ channel, which could be explained by slow dissociation of the drug from the inactivated state of the channel.  相似文献   

20.
We have studied Ca2+ currents in ascidian eggs using the whole-cell clamp technique. T and L components, as observed in somatic cells, are present and the L-type current predominates. Since the IV relationship for these inward currents overlap at -30 mV, separation of the two components using different voltage regimes is not feasible. Increasing external Ca2+ results in larger currents. The L-type current decreases in a dose-dependent fashion in the presence of Mn2+ and Nifedipine, while the T-type current is inhibited in Ni2+. When Ba2+ was used as the carrier ion, channel kinetics and conductance were completely altered. Considering the density and kinetics of L-type channels in unfertilized eggs it is probable they play an important role in regulating cytosolic Ca2+ during early developmental processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号