首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effective and safe monitoring techniques are needed by U.S. land managers to understand free-roaming horse behavior and habitat use and to aid in making informed management decisions. Global positioning system (GPS) and very high frequency (VHF) radio collars can be used to provide high spatial and temporal resolution information for detecting free-roaming horse movement. GPS and VHF collars are a common tool used in wildlife management, but have rarely been used for free-roaming horse research and monitoring in the United States. The purpose of this study was to evaluate the design, safety, and detachment device on GPS/VHF collars used to collect free-roaming horse location and movement data. Between 2009 and 2010, 28 domestic and feral horses were marked with commercial and custom designed VHF/GPS collars. Individual horses were evaluated for damage caused by the collar placement, and following initial observations, collar design was modified to reduce the potential for injury. After collar modifications, which included the addition of collar length adjustments to both sides of the collar allowing for better alignment of collar and neck shapes, adding foam padding to the custom collars to replicate the commercial collar foam padding, and repositioning the detachment device to reduce wear along the jowl, we observed little to no evidence of collar wear on horses. Neither custom-built nor commercial collars caused injury to study horses, however, most of the custom-built collars failed to collect data. During the evaluation of collar detachment devices, we had an 89% success rate of collar devices detaching correctly. This study showed that free-roaming horses can be safely marked with GPS and/or VHF collars with minimal risk of injury, and that these collars can be a useful tool for monitoring horses without creating a risk to horse health and wellness.  相似文献   

2.
A dramatic expansion of road building is underway in the Congo Basin fuelled by private enterprise, international aid, and government aspirations. Among the great wilderness areas on earth, the Congo Basin is outstanding for its high biodiversity, particularly mobile megafauna including forest elephants (Loxodonta africana cyclotis). The abundance of many mammal species in the Basin increases with distance from roads due to hunting pressure, but the impacts of road proliferation on the movements of individuals are unknown. We investigated the ranging behaviour of forest elephants in relation to roads and roadless wilderness by fitting GPS telemetry collars onto a sample of 28 forest elephants living in six priority conservation areas. We show that the size of roadless wilderness is a strong determinant of home range size in this species. Though our study sites included the largest wilderness areas in central African forests, none of 4 home range metrics we calculated, including core area, tended toward an asymptote with increasing wilderness size, suggesting that uninhibited ranging in forest elephants no longer exists. Furthermore we show that roads outside protected areas which are not protected from hunting are a formidable barrier to movement while roads inside protected areas are not. Only 1 elephant from our sample crossed an unprotected road. During crossings her mean speed increased 14-fold compared to normal movements. Forest elephants are increasingly confined and constrained by roads across the Congo Basin which is reducing effective habitat availability and isolating populations, significantly threatening long term conservation efforts. If the current road development trajectory continues, forest wildernesses and the forest elephants they contain will collapse.  相似文献   

3.
Abstract: Global Positioning System (GPS) telemetry is used extensively to study animal distribution and resource selection patterns but is susceptible to biases resulting from data omission and spatial inaccuracies. These data errors may cause misinterpretation of wildlife habitat selection or spatial use patterns. We used both stationary test collars and collared free-ranging American black bears (Ursus americanus) to quantify systemic data loss and location error of GPS telemetry in mountainous, old-growth temperate forests of Olympic National Park, Washington, USA. We developed predictive models of environmental factors that influence the probability of obtaining GPS locations and evaluated the ability of weighting factors derived from these models to mitigate data omission biases from collared bears. We also examined the effects of microhabitat on collar fix success rate and examined collar accuracy as related to elevation changes between successive fixes. The probability of collars successfully obtaining location fixes was positively associated with elevation and unobstructed satellite view and was negatively affected by the interaction of overstory canopy and satellite view. Test collars were 33% more successful at acquiring fixes than those on bears. Fix success rates of collared bears varied seasonally and diurnally. Application of weighting factors to individual collared bear fixes recouped only 6% of lost data and failed to reduce seasonal or diurnal variation in fix success, suggesting that variables not included in our model contributed to data loss. Test collars placed to mimic bear bedding sites received 16% fewer fixes than randomly placed collars, indicating that microhabitat selection may contribute to data loss for wildlife equipped with GPS collars. Horizontal collar errors of >800 m occurred when elevation changes between successive fixes were >400 m. We conclude that significant limitations remain in accounting for data loss and error inherent in using GPS telemetry in coniferous forest ecosystems and that, at present, resource selection patterns of large mammals derived from GPS telemetry should be interpreted cautiously.  相似文献   

4.
ABSTRACT Use of Global Positioning System (GPS) collars on free-ranging ungulates overcomes many limitations of conventional very high frequency (VHF) telemetry and offers a practical means of studying space use and home range estimation. To better understand winter home ranges of white-tailed deer (Odocoileus virginianus), we evaluated GPS collar performance, and we compared GPS- and VHF-derived diurnal home ranges (for the same animals) and GPS-derived home range estimates for diurnal and nocturnal locations. Overall, the mean fix success rate of our GPS collars was 85% (range = 14–99%). Kernel density estimates of home range (using the 95% probability contour) derived from GPS and VHF locations were generally similar, as were GPS-derived diurnal and nocturnal home ranges. Overlap indices between GPS and VHF utilization distributions (UDs) ranged from 0.49 to 0.78 for the volume of intersection (VI) index and from 0.67 to 0.94 for Bhattacharyya's affinity (BA); overlap indices for GPS-diurnal and nocturnal UDs ranged from 0.29 to 0.81 for VI and from 0.56 to 0.94 for BA. Despite similarities of home ranges estimated from GPS versus VHF locations and GPS-diurnal versus nocturnal locations, our data also indicate that differences may have important implications for studies focused on deer use of space, habitat, and resources at a finer scale.  相似文献   

5.
Aerial survey data are widely used to model distribution of wildlife. However, their performance in habitat modelling remains largely untested. We used aerial survey and satellite‐linked Global Positioning System (GPS) collar data for elephants, to test (i) whether there is an optimal spatial resolution of predictor variables at which habitat models based on aerial survey data that are uncorrected for locational error can accurately predict elephant habitat and (ii) whether habitat models based on these data sets can accurately predict the presence of elephants in closed woodland habitats. We applied maximum entropy modelling (Maxent) to these data sets and used the Normalised Difference Vegetation Index (NDVI) as well as distance from water points as the habitat predictors to answer these questions. Our results demonstrate better ability of aerial survey data to predict elephant presence at the coarser spatial resolution of 1000 m of both predictor variables. Habitat models derived from aerial survey data underpredicted elephant presence in more closed woodland habitats than those derived from GPS collar data. This result implies that elephants located under dense tree canopies are likely missed during an aerial survey. Our study is one of the first to empirically test and report results on the poor performance of aerial survey data in habitat modelling especially in dense woodlands.  相似文献   

6.
Understanding factors affecting the distribution of the African elephant is important for its conservation in increasingly human‐dominated savannah landscapes. However, understanding how landscape fragmentation and vegetation productivity affect elephant habitat utilization remains poorly understood. In this study, we tested whether landscape fragmentation and vegetation productivity explain elephant habitat utilization in the Amboseli ecosystem in Kenya. We used GPS (Global Positioning System) telemetry data from five elephants to quantify elephant habitat utilization. Habitat utilization was determined by calculating the time elephants spent within a unit area. We then used generalized additive models (GAMs) to model the relationship between time density and landscape fragmentation, as well as vegetation productivity. Results show that landscape fragmentation and vegetation productivity significantly (P < 0.05) explain elephant habitat utilization. A significant (P < 0.05) unimodal relationship between vegetation productivity and habitat utilization was observed. Results suggest that elephants spend much of their time in less fragmented landscapes of intermediate productivity.  相似文献   

7.
The abundance of large vertebrates is rapidly declining, particularly in the tropics where over-hunting has left many forests structurally intact but devoid of large animals. An urgent question then, is whether these 'empty' forests can sustain their biodiversity without large vertebrates. Here we examine the role of forest elephant ( Loxodonta africana cyclotis ) seed dispersal in maintaining the community structure of trees in the Ndoki Forest, northern Congo. Analysis of 855 elephant dung piles suggested that forest elephants disperse more intact seeds than any other species or genus of large vertebrate in African forests, while GPS telemetry data showed that forest elephants regularly disperse seeds over unprecedented distances compared to other dispersers. Our analysis of the spatial distribution of trees from a sample of 5667 individuals showed that dispersal mechanism was tightly correlated with the scale of spatial aggregation. Increasing amounts of elephant seed dispersal was associated with decreasing aggregation. At distances of<200 m, trees whose seeds are dispersed only by elephants were less aggregated than the random expectation, suggesting Janzen–Connell effects on seed/seedling mortality. At the landscape scale, seed dispersal mode predicted the rate at which local tree community similarity decayed in space. Our results suggest that the loss of forest elephants (and other large-bodied dispersers) may lead to a wave of recruitment failure among animal-dispersed tree species, and favor regeneration of the species-poor abiotically dispersed guild of trees.  相似文献   

8.
Route taken and distance travelled are important parameters for studies of animal locomotion. They are often measured using a collar equipped with GPS. Collar weight restrictions limit battery size, which leads to a compromise between collar operating life and GPS fix rate. In studies that rely on linear interpolation between intermittent GPS fixes, path tortuosity will often lead to inaccurate path and distance travelled estimates. Here, we investigate whether GPS‐corrected dead reckoning can improve the accuracy of localization and distance travelled estimates while maximizing collar operating life. Custom‐built tracking collars were deployed on nine freely exercising domestic dogs to collect high fix rate GPS data. Simulations were carried out to measure the extent to which combining accelerometer‐based speed and magnetometer heading estimates (dead reckoning) with low fix rate GPS drift correction could improve the accuracy of path and distance travelled estimates. In our study, median 2‐dimensional root‐mean‐squared (2D‐RMS) position error was between 158 and 463 m (median path length 16.43 km) and distance travelled was underestimated by between 30% and 64% when a GPS position fix was taken every 5 min. Dead reckoning with GPS drift correction (1 GPS fix every 5 min) reduced 2D‐RMS position error to between 15 and 38 m and distance travelled to between an underestimation of 2% and an overestimation of 5%. Achieving this accuracy from GPS alone would require approximately 12 fixes every minute and result in a battery life of approximately 11 days; dead reckoning reduces the number of fixes required, enabling a collar life of approximately 10 months. Our results are generally applicable to GPS‐based tracking studies of quadrupedal animals and could be applied to studies of energetics, behavioral ecology, and locomotion. This low‐cost approach overcomes the limitation of low fix rate GPS and enables the long‐term deployment of lightweight GPS collars.  相似文献   

9.
《Mammalian Biology》2008,73(1):2-13
We studied the ranging patterns of 10 elephants in and around the Yala protected area complex, southern Sri Lanka, using VHF radio telemetry. All tracked elephants displayed similar ranging patterns. The observed home ranges were small (mean=115.2±64.0 km2) relative to reported home ranges in India, possibly in response to high habitat productivity and abundant perennial water sources. Elephants showed high fidelity to their ranges. Home ranges had relatively large core areas, suggesting intensive use of habitat. No geographically distinct seasonal ranges or migratory behavior was observed. Home range overlap was high, and territoriality was absent. Male musth ranges were considerably larger than non-musth ranges and may signify mate searching. Most elephants ranged both in and outside protected areas, suggesting that resources outside protected areas were important for their survival. Thus, translocating and restricting elephants to protected areas will be detrimental to their survival, as it limits resource access. The ranging patterns of Asian elephants suggest that conservation of the species requires their management both in and outside protected areas.  相似文献   

10.
African forest elephants (Loxodonta cyclotis Matschie, 1900) are ecological engineers that play a fundamental role in vegetation dynamics. The species is of immediate conservation concern, yet it is relatively understudied. To narrow this knowledge gap, we studied the drivers of daily movement patterns (linear displacements) of forest elephants—characterised by a set of geographical, meteorological and anthropogenic variables—in the Odzala-Kokoua National Park, Republic of Congo. Explicitly, we used conditional random forest to model and disentangle the main environmental factors governing the displacements of six forest elephants, fitted with GPS collars and tracked over 16 months. Results indicated that females moved further distances than males, while the presence of roads or human settlements disrupted elephant behaviour resulting in faster displacements. Forest elephants moved faster along watercourses and through forest with understory dominated by Marantaceae forests and bais, but moved slower in savannahs. Finally, flood-prone areas—described by elevation and accumulated precipitation—and higher temperatures prevented longer displacements. We expect these results to improve the knowledge on the species movements through different habitats, which would benefit its conservation management.  相似文献   

11.
Owing to the late Pleistocene extinctions, the megafauna of Europe, Australia and the Americas disappeared, and with them the dispersal service they offered megafaunal fruit. The African savanna elephant, the largest remaining megaherbivore, offers valuable insights into the seed dispersal services provided by extinct megafauna in prehistoric times. Elephant seed dispersal studies have for the most part concentrated on African and Asian forest elephants. African savanna elephants are morphologically distinct from their forest counterparts. Like the forest elephants they consume large quantities of fruit from a large number of tree species. Despite this little is known of the savanna trees that rely on elephants for their dispersal or the spatial scale at which these seeds are dispersed. We combined information from feeding trials conducted on four park elephants with field telemetry data from 38 collared elephants collected over an 8‐year period in APNR/Kruger National Park to assess the seed dispersal service provided by savanna elephants. This study provides the first detailed account of the spatial scale at which African savanna elephants disperse seeds. Our mechanistic model predicts that 50 percent of seeds are carried over 2.5 km, and distances up to 65 km are achievable in maximum gut passage time. These findings suggest the savanna elephant as the longest distance terrestrial vertebrate disperser yet investigated. Maintaining their ecological role as a seed disperser may prove a significant factor in the conservation of large‐fruited tree diversity within the savannas. These results suggest that extinct megafauna offered a functionally unique dispersal service to megafaunal fruit.  相似文献   

12.
Human-elephant conflict (HEC) threatens the survival of endangered Asian elephants (Elephas maximus). Translocating “problem-elephants” is an important HEC mitigation and elephant conservation strategy across elephant range, with hundreds translocated annually. In the first comprehensive assessment of elephant translocation, we monitored 16 translocations in Sri Lanka with GPS collars. All translocated elephants were released into national parks. Two were killed within the parks where they were released, while all the others left those parks. Translocated elephants showed variable responses: “homers” returned to the capture site, “wanderers” ranged widely, and “settlers” established home ranges in new areas soon after release. Translocation caused wider propagation and intensification of HEC, and increased elephant mortality. We conclude that translocation defeats both HEC mitigation and elephant conservation goals.  相似文献   

13.
ABSTRACT Use of Global Positioning System (GPS) telemetry is increasing in wildlife studies and has provided researchers and managers with new insight into animal behavior. However, performance of GPS collars varies and a major concern is the cause of unsuccessful fixes. We examined possible factors causing missed fixes in GPS collars on sympatric free-ranging Eurasian lynx (Lynx lynx) and wolverines (Gulo gulo) in northern Sweden. We tested for effects of species, activity, habitat, individual, and collar on fix rate. Species was the most important factor affecting fix rate. Fix rate of GPS collars on lynx (80%) was almost twice as high as on wolverines (46%). Fix rate decreased during periods of low activity (day beds) for both species. Fix rate also decreased for females (both lynx and wolverine) for a period after they gave birth. We found no effect of proportion of forest within individual home range on fix rate. We conclude that species behavior, characteristics, and activity pattern are important factors affecting fix rate that we recommend be taken into consideration prior to analyzing GPS location data.  相似文献   

14.
We investigated the ranging patterns of elephants in the Marsabit protected area, north eastern Kenya, to ascertain the range of bachelor and female family herds in different seasons, and to identify corridor and noncorridor areas. Data were acquired for five bachelor and four female family herds equipped with satellite‐linked geographical positioning system collars, and monitored from December 2005 to December 2007. Distinct dry (about 260 km2) and wet seasons (about 910 km2) ranges were observed, with connecting corridors (north‐eastern corridor: about 90 km long, about 2‐7 km wide; southern corridors: about 10‐20 km long, about 2‐3 km wide). The dry season range corresponded with Marsabit evergreen forest, while the wet season range matched with dry deciduous lowland shrubs. The ranging elephants moved at speed of about 0.2‐20 kmh?1. Bachelor herds moved faster than female family herds. Elephants moved fast during the intermediate and wet seasons than during the dry season. The speed of ranging elephants was over 1 kmh?1 in the corridor areas and about 0.2 to less than 1 kmh?1 in the non‐corridor areas. Expansion of settlements towards corridor areas needs to be controlled to avoid future blocking of connectivity between wet and dry season elephant ranges.  相似文献   

15.
Automated tracking using a satellite global position system (GPS) has major potential as a research tool in studies of primate ecology. However, implementation has been limited, at least partly because of technological difficulties associated with the dense forest habitat of many primates. In contrast, primates inhabiting relatively open environments may provide ideal subjects for use of GPS collars, yet no empirical tests have evaluated this proposition. Here, we used an automated GPS collar to record the locations, approximate body surface temperature, and activity for an adult female baboon during 90 days in the savannah habitat of Amboseli, Kenya. Given the GPS collar's impressive reliability, high spatial accuracy, other associated measurements, and low impact on the study animal, our results indicate the great potential of applying GPS technology to research on wild primates.  相似文献   

16.
Abstract: Florida panthers (Puma concolor coryi) are listed as an endangered subspecies in the United States and they exist in a single Florida population with <100 individuals; all known reproduction occurs south of Lake Okeechobee. Habitat loss is the biggest threat to this small population and previous studies of habitat selection have relied on very high frequency (VHF) telemetry data collected almost exclusively during diurnal periods. We investigated habitat selection of 12 panthers in the northern portion of the breeding range using 1) Global Positioning System (GPS) telemetry data collected during nocturnal and diurnal periods and 2) VHF telemetry data collected only during diurnal periods. Analysis of both types of telemetry data yielded similar results as panthers selected upland (P < 0.001) and wetland (P < 0.001) forested habitat types. Our results indicated that forests are the habitats selected by panthers and generally support the current United States Fish and Wildlife Service panther habitat ranking system. We suggest that future studies with greater numbers of panthers should investigate panther habitat selection using GPS telemetry data collected throughout the range of the Florida panther and with location attempts scheduled more evenly across the diel period. Global Positioning System radiocollars were effective at obtaining previously unavailable nocturnal telemetry data on panthers; however, we recommend that panther researchers continue to collect VHF telemetry data until acquisition rates and durability of GPS collars improve. (JOURNAL OF WILDLIFE MANAGEMENT 72(3):633–639; 2008)  相似文献   

17.

Background

Home range is defined as the extent and location of the area covered annually by a wild animal in its natural habitat. Studies of African and Indian elephants in landscapes of largely open habitats have indicated that the sizes of the home range are determined not only by the food supplies and seasonal changes, but also by numerous other factors including availability of water sources, habitat loss and the existence of man-made barriers. The home range size for the Bornean elephant had never been investigated before.

Methodology/Principal Findings

The first satellite tracking program to investigate the movement of wild Bornean elephants in Sabah was initiated in 2005. Five adult female elephants were immobilized and neck collars were fitted with tracking devices. The sizes of their home range and movement patterns were determined using location data gathered from a satellite tracking system and analyzed by using the Minimum Convex Polygon and Harmonic Mean methods. Home range size was estimated to be 250 to 400 km2 in a non-fragmented forest and 600 km2 in a fragmented forest. The ranging behavior was influenced by the size of the natural forest habitat and the availability of permanent water sources. The movement pattern was influenced by human disturbance and the need to move from one feeding site to another.

Conclusions/Significance

Home range and movement rate were influenced by the degree of habitat fragmentation. Once habitat was cleared or converted, the availability of food plants and water sources were reduced, forcing the elephants to travel to adjacent forest areas. Therefore movement rate in fragmented forest was higher than in the non-fragmented forest. Finally, in fragmented habitat human and elephant conflict occurrences were likely to be higher, due to increased movement bringing elephants into contact more often with humans.  相似文献   

18.
以佩戴具有无线电发射功能的GPS 颈圈(Lotek GPS_ 4400M) 的放归大熊猫“祥祥”作为目标动物, 2006 年4 月至2007 年2 月,采用无线电遥测技术(RT)和GPS 跟踪技术在卧龙自然保护区的“五一棚”区域, 每日监测大熊猫在野外环境下的生存状况、移动规律和觅食行为。为了比较RT 和GPS 在高山峡谷地区空间定位的可行性和有效性,我们引入空间定位率、地形特征、空间定位差、巢域大小和日移动距离等指标来分析RT 和GPS 之间的定位差异。结果表明:RT 的空间定位效率明显高于GPS 的自动定位(P < 0. 001),分别是54.1%(绘图法)和45. 2% (≧ 2D);不同月份RT 和GPS 的空间定位率之间具有显著性差异(P < 0. 05),这与大熊猫不同月份的海拔活动范围和觅食行为特性密切相关。RT 位点的地形指数中坡度高于GPS,坡向和海拔高度较GPS 定位点低,两种无线电遥测方法(两点直接计算法和绘图法)之间没有显著性差异(P > 0.05);同一天位点之间的距离(空间定位差)平均450 ~ 660 m 左右;RT 与GPS 所估测的大熊猫巢域大小,除5 月、9 月和12月RT 低于GPS 外,其余月份为前者高于后者,但无显著性差异(P > 0. 05);日移动距离除12 月份RT 小于GPS 外,其余月份都呈现出RT 大于GPS 的格局,统计检验结果两者之间差异显著(P < 0. 05);两种无线电遥测方法所测指数之间都无明显差异(P > 0. 05)。这说明RT 遥测和GPS 定位都可以应用于高山峡谷地区野生动物的生态学研究,而且GPS 无线电颈圈在亚高山和高山森林中具有可行性和有效性。  相似文献   

19.
This study, designed to survey forest elephants ( Loxodonta africana cyclotis ) at Kakum Conservation Area, Ghana, is the first to apply acoustic methods to elephant abundance estimation and to compare results with independent survey estimates. Nine acoustic sensors gathered sound continuously for 38 days. Low-frequency calling rates have been established as useful elephant abundance indices at a Namibian watering hole and a central African forest clearing. In this study, we estimated elephant population size by applying an abundance index model and detection function developed in central Africa to data from simultaneous sampling periods on Kakum sensors. The sensor array recorded an average of 1.81 calls per 20-min sampling period from an effective detection area averaging 10.27 km2. The resulting estimate of 294 elephants (95% CI: 259–329) falls within confidence bounds of recent dung-based surveys. An extended acoustic model, estimating the frequency with which elephants are silent when present, yields an estimate of 350 elephants (95% CI: 315–384). Acoustic survey confidence intervals are at least half as wide as those from dung-based surveys. This study demonstrates that acoustic surveying is a valuable tool for estimating elephant abundance, as well as for detecting other vocal species and anthropogenic noises that may be associated with poaching.  相似文献   

20.
Abstract: Animal locations collected by Global Positioning System (GPS) collars will represent a biased sample of the sites an animal used if some position fixes fail and if those missed locations do not occur randomly. Probability of a GPS receiver obtaining a position fix is known to decline as canopy cover increases, but the impact of forest canopy cover was insufficient to account for the low fix rates we observed for GPS collars on grizzly bears (Ursus arctos). We tested the hypothesis that GPS fix rates were related to the interaction between animal activity (active vs. resting) and canopy cover by evaluating the following predictions: 1) grizzly bear activity should follow a circadian pattern similar to the circadian fix-rate pattern, 2) grizzly bear use of canopy cover should follow a circadian pattern similar to the circadian fix rates, 3) grizzly bear activity should be related to canopy cover (i.e., bears should rest in areas with relatively high canopy covers and feed and move in relatively open areas), and 4) collar orientation and canopy cover should interact to affect the fix rates of test collars. The GPS fix rates traced a bimodal circadian pattern that was directly related to the circadian pattern of grizzly bear activity. Fix rates declined when bears were more likely to be using denser cover, and fix rates of test collars demonstrated that collar orientation interacted with canopy cover, such that fix rates declined much more with increasing canopy cover when the collar was on its side than when the collar was upright. We concluded that inferences made about grizzly bear microhabitat use, based on GPS locations, will underrepresent high canopy cover sites, especially when grizzly bears are resting there. (JOURNAL OF WILDLIFE MANAGEMENT 72(3):596–602; 2008)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号