首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Transcellular transport of a variety of ligands may be an important mechanism by which regulatory substances reach their site of action. We have studied the transcellular transport of two 6,000-mol-wt proteins, epidermal growth factor (EGF) and insulin, across polarized Madin-Darby canine kidney (MDCK) cells grown on dual-sided chambers on a nitrocellulose filter substrate. When grown on these chambers, MDCK cells are polarized and express distinct basal and apical surfaces. MDCK cells are capable of unidirectional transport of EGF from the basal-to-apical direction, 50% of bound EGF transported in 2 h. Transport was inhibited by the addition of unlabeled EGF in a dose-dependent manner. Anti-EGF receptor Ab, which inhibited binding, also inhibited transport. No transport in the apical-to-basal direction is noted. Insulin transport is not observed in either direction. Transport correlates with the presence of ligand-specific receptors on the cell surface. Hence, EGF receptors (Ro = 48,000, Kd = 3.5 X 10(-10) M) are found only on the basal surface of the MDCK cells and neither surface expresses insulin receptors. Characterization of the EGF receptors on MDCK cells, as assessed by affinity, molecular mass, and anti-receptor antibody binding reveals that this receptor has similar characteristics to EGF receptors previously described on a variety of cells. Hence, the EGF receptor can function as a transporter of EGF across an epithelial cell barrier.  相似文献   

2.
The ability to take up substances from the surrounding environment not only provides cells with vital nutrients, but also enables the selective transport of substances from one compartment to another. Megalin and cubilin are two structurally different endocytic receptors that interact to serve such functions. Evidence has accumulated in recent years to indicate that these receptors have important functions in both normal physiology and pathology.  相似文献   

3.
Novel psychoactive substances include synthetic cannabinoids, cathinone derivatives, psychedelic phenethylamines, novel stimulants, synthetic opioids, tryptamine derivatives, phencyclidine‐like dissociatives, piperazines, GABA‐A/B receptor agonists, a range of prescribed medications, psychoactive plants/herbs, and a large series of performance and image enhancing drugs. Users are typically attracted by these substances due to their intense psychoactive effects and likely lack of detection in routine drug screenings. This paper aims at providing psychiatrists with updated knowledge of the clinical pharmacology and psychopathological consequences of the use of these substances. Indeed, these drugs act on a range of neurotransmitter pathways/receptors whose imbalance has been associated with psychopathological conditions, including dopamine, cannabinoid CB1, GABA‐A/B, 5‐HT2A, glutamate, and k opioid receptors. An overall approach in terms of clinical management is briefly discussed.  相似文献   

4.
Development of the blood-brain barrier   总被引:7,自引:0,他引:7  
The endothelial cells forming the blood-brain barrier (BBB) are highly specialized to allow precise control over the substances that leave or enter the brain. An elaborate network of complex tight junctions (TJ) between the endothelial cells forms the structural basis of the BBB and restricts the paracellular diffusion of hydrophilic molecules. Additonally, the lack of fenestrae and the extremely low pinocytotic activity of endothelial cells of the BBB inhibit the transcellular passage of molecules across the barrier. On the other hand, in order to meet the high metabolic needs of the tissue of the central nervous system (CNS), specific transport systems selectively expressed in the membranes of brain endothelial cells in capillaries mediate the directed transport of nutrients into the CNS or of toxic metabolites out of the CNS. Whereas the characteristics of the mature BBB endothelium are well described, the cellular and molecular mechanisms that control the development, differentiation and maintenance of the highly specialized endothelial cells of the BBB remain unknown to date, despite the recent explosion in our knowledge of the growth factors and their receptors specifically acting on vascular endothelium during development. This review summarizes our current knowledge of the cellular and molecular mechanisms involved in the development and maintenance of the BBB.  相似文献   

5.
In neuroscience, myosin V motor proteins have attracted attention since they are highly expressed in brain, and absence of myosin Va in man leads to a severe neurological disease called Griscelli syndrome. While in some cells myosin V is described to act as a vesicle transport motor, an additional role in exocytosis has emerged recently. In neurons, myosin V has been linked to exocytosis of secretory vesicles and recycling endosomes. Through these functions, it is implied in regulating important brain functions including the release of neuropeptides by exocytosis of large dense-core vesicles and the insertion of neurotransmitter receptors into post-synaptic membranes. This review focuses on the role of myosin V in (i) axonal transport and stimulated exocytosis of large dense-core vesicles to regulate the secretion of neuroactive substances, (ii) tethering of the endoplasmic reticulum at cerebellar synapses to permit long-term depression, (iii) recycling of α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors at hippocampal synapses during long-term potentiation, and (iv) recycling of nicotinic acetylcholine receptors at the neuromuscular junction. Myosin V is thus discussed as an important modulator of synaptic plasticity.  相似文献   

6.
陈元渊  陈红岩  卢大儒 《遗传》2014,36(6):547-551
细胞自噬是细胞在面对内外部环境压力的情况下, 为了自身的稳定而采取的一种降解内部及外来入侵物质的机制。SNARE(Soluble N-ethylmaleimide-sensitive factor attachment protein receptors)假说指出SNARE蛋白在细胞物质运输以及特异性膜融合过程中具有重要作用, 揭示了细胞正常生理活动有序进行的分子机制。由于细胞自噬涉及从自噬体的形成到自噬体溶酶体的融合等诸多膜融合的过程, 因此, 文章对近年来SNARE蛋白在调控细胞自噬过程的研究进展进行了综述。  相似文献   

7.
Characterization of toxic chemicals with relevance to human exposure does normally not belong to Life Cycle Assessments (LCA) and is still a topic of research. The concept of hazard potential classes proposed in this paper is primarily based on threshold limit values that are considered to be a measure of the severity of potential effects. In the absence of threshold limit values the R-phrases of the ordinance of dangerous substances are used. Substances are assigned to five hazard potential classes (A to E). Potentially dangerous chemicals are identified and substances of low toxicological relevance are excluded from further evaluation. The location where a probable exposure might occur (indoor versus outdoor) and inter-media transport of substances is considered. The product comparison is based both on the results of the proposed “semi-quantitative screening method” and on toxicological expert knowledge.  相似文献   

8.
All plant cells — those of roots, leaves, or other parts — are capable of absorbing water and solutes as well as gaseous substances. This trait, derived by terrestrial plants during evolution from their ancestral aquatic habitat, is exploited in many agronomic practices. The pathway of entry of nutrients supplied to the leaf involves penetration of cuticular membranes enveloping it, absorption by the cells within, and transport away from the leaf. These processes are affected by humidity, temperature, and physiology of the leaf and influenced by surfactants and growth substances. Foliar injury due to sprays is associated with concentration and nature of the solutes. Considerable knowledge has been acquired in the last few years on the mechanisms of foliar absorption and mobility of several elements. Greater importance is now attached to foliar feeding, when soil‐ground water pollution is attendant with soil fertilization.  相似文献   

9.
Plant hormones and plant growth regulators in plant tissue culture   总被引:13,自引:0,他引:13  
Summary This is a short review of the classical and new, natural and synthetic plant hormones and growth regulators (phytohormones) and highlights some of their uses in plant tissue culture. Plant hormones rarely act alone, and for most processes— at least those that are observed at the organ level—many of these regulators have interacted in order to produce the final effect. The following substances are discussed: (a) Classical plant hormones (auxins, cytokinins, gibberellins, abscisic acid, ethylene and growth regulatory substances with similar biological effects. New, naturally occurring substances in these categories are still being discovered. At the same time, novel structurally related compounds are constantly being synthesized. There are also many new but chemically unrelated compounds with similar hormone-like activity being produced. A better knowledge of the uptake, transport, metabolism, and mode of action of phytohormones and the appearance of chemicals that inhibit synthesis, transport, and action of the native plant hormones has increased our knowledge of the role of these hormones in growth and development. (b) More recently discovered natural growth substances that have phytohormonal-like regulatory roles (polyamines, oligosaccharins, salicylates, jasmonates, sterols, brassinosteroids, dehydrodiconiferyl alcohol glucosides, turgorins, systemin, unrelated natural stimulators and inhibitors), as well as myoinositol. Many of these growth active substances have not yet been examined in relation to growth and organized developmentin vitro.  相似文献   

10.
In the human body, the concentration of free iron is limiting for bacterial growth, since iron is bound to transport and storage proteins such as transferrin and lactoferrin. When grown under iron starvation, Neisseria meningitidis produces receptors for these proteins in the outer membrane. These receptors are presently being characterized at the molecular level. Here, we summarize our current knowledge of these receptors, with special emphasis on the LbpA and FrpB proteins, which are studied in our laboratories. Furthermore, the genetic and antigenic variability of these proteins and their vaccine potential are discussed.  相似文献   

11.
We determined the content of galactose-glucose-, maltose-, and ribose-binding proteins in cells of Escherichia coli K-12 grown in a variety of media and also measured the respective transport and chemotactic activities that depend on those binding proteins. Correlation of the level of induction of a particular binding protein with the extent of tactic activity mediated by that protein indicates that the magnitude of the tactic response to a particular stimulating compound is a direct function of the number of receptors per cell. In contrast, comparison of the magnitudes of response to substances recognized by independent receptors indicates that some stimulus-receptor complexes are more effective in eliciting tactic responses than are others. Thus, the magnitude of response to any particular stimulating compound is a function both of the number of receptors per cell and of the effectiveness of the stimulus-receptor complex. Considerations of available information about the tactic response to maltose suggest that the effectiveness of a stimulus-receptor complex is related to the transducer with which the receptor interacts. The tar product appears to be a relatively effective transducer of the signals it accepts from receptors for aspartate, alpha-methylaspartate, and maltose, whereas the trg product appears to be a relatively ineffective transducer of signals it accepts from receptors for galactose and ribose.  相似文献   

12.
Since the review on endogenous growth substances of citrus tissues by Goldschmidt in 1976 (HortScience, 11: 95-99), much information regarding this topic has been published in a wide array of journals. The present review provides a comprehensive overview of published information on endogenous levels of the five classes of plant growth substances (i.e., auxins, cytokinins, gibberellins, ethylene, and abscisic acid), plus polyamines and other endogenous substances that appear to have a role in regulating citrus growth and development. It is the first in a three-part series that next examines hormonal regulation of physiological processes in citrus followed by review of current uses and commercial applications of plant growth regulators in citrus production. In this article, a brief history of the detection and characterization of each class of plant growth substances is given. Following this, variation in endogenous levels associated with different organs (and/or tissues), stages of development, species, cultivars, cultural practices, and environmental factors is reviewed. For each class, current knowledge regarding biosynthesis, metabolism and transport in citrus tissues is summarized. The concluding section deals with future research directions.  相似文献   

13.
Peroxisomal matrix protein transport relies on 2 cytosolic receptors, PEX5 and PEX7, which import peroxisomal targeting signal type 1 (PTS1) and PTS2-containing proteins, respectively. To better understand the transport mechanism of PEX7, we isolated PEX7 complexes using proteomics. We identified PEX5 as well as PTS1- and PTS2-containing proteins within the complex, thereby confirming the interaction between PEX5 and PEX7 during cargo transport that had been previously characterized by biochemical approaches. In addition, a chaperone T-complex and 2 small Rab GTPases were identified. We recently reported that the RabE1c is involved in the degradation of the PEX7 when abnormal PEX7 is accumulated on the peroxisomal membrane. This study expands our knowledge on the transport machinery via PEX7 by identifying both known and novel PEX7-interacting proteins and thus is helpful for further investigation of the regulation of the peroxisomal protein receptor during its translocation.  相似文献   

14.
N-methyl-DL-aspartate induced in mice and rats hyperactivity and convulsions. In the mice convulsions effectively suppressed by selected antagonists of NMDA receptors AP 5 and AP 7, and also diazepam and ketamine. But hyperactivity very little attenuated by these substances in high doses. In the rats all these substances on the contrary suppressed hyperactivity and convulsions in the same degree. In the rats hynurenic acid prevented hyperactivity and convulsions. Observations point out to the fact that in mice there are two pharmacological and functional types of NMDA receptors whereas in rats there is only one type which is different from NMDA mice receptors.  相似文献   

15.
The effects of ascorbic acid, sodium citrate, and sodium bicarbonate on59Fe-transferrin,54Mn-transferrin, and65Zn-transferrin uptake by the receptors disposed of plasma membrane isolated from lactating mouse mammary gland cells have been investigated. The effect of 10-2 mol/L ascorbic acid alone and in combination with NaHCO3 on the59Fe-transferrin uptake is significant and positive.54Mn-transferrin and65Zn-transferrin binding to the cell receptors are influenced optimally by 0.5 mol/L sodium bicarbonate. Sodium citrate alone or in combination with other substances always has a negative effect on binding of these three metals. It is suggested that a precise mechanism may exist with large possibilities to rearrange metal uptake and its transport from blood to milk.  相似文献   

16.
The gaseous phytohormone ethylene is implicated in virtually all phases of plant growth and development and thus has a major impact on crop production. This agronomic impact makes understanding ethylene signaling the Philosopher’s Stone of the plant biotechnology world in applications including post-harvest transport of foodstuffs, consistency of foodstuff maturity pre-harvest, decorative flower freshness and longevity, and biomass production for biofuel applications. Ethylene is biosynthesized by plants in response to environmental factors and plant life-cycle events, and triggers a signaling cascade that modulates over 1000 genes. The key components in the perception of ethylene are a family of copper dependent receptors, the bioinorganic chemistry of which has been largely ignored by the chemical community. Since identification of these receptors two decades ago, there has been tremendous growth in knowledge in the biological community on the signal transduction pathways and mechanisms of ethylene signaling. In this review, we highlight these advances and key chemical voids in knowledge that are overdue for exploration, and which are required to ultimately regulate and control ethylene signaling.  相似文献   

17.
The stable, transparent, thermoreversible organogels which are prepared by adding a minute amount of water to a solution of lecithin in isopropylpalmitate are studied as matrices for promoting the transdermal transport of drugs throughout the skin. In this work we study this process by using two model drug substances, scopolamine (already well known as a transdermally active substance) and broxaterol, a new drug against asthma. It is found that the transport of scopolamine is much more effective in gel than in aqueous solution and that the transport of broxaterol is also proceeding well. Since the same can be observed with a variety of substances differing in the chemical structure, we speculate on the application of lecithin gels as general matrices for the transdermal transport.  相似文献   

18.
The pancreatic islets are one of the most vascularized organs of the body. This likely reflects the requirements of the organ for a rich supply of nutrients and oxygen to the tissue, as well as the need for rapid disposal of metabolites and secreted hormones. The islet endothelium is richly fenestrated to facilitate trans-endothelial transport of secreted hormones, has a unique expression of surface markers, and produces a number of vasoactive substances and growth factors. The islet endothelial cells play a critical role in the early phase of type 1 diabetes mellitus by increasing the expression of surface leucocyte-homing receptors, thereby enabling immune cells to enter the endocrine tissue and cause beta-cell destruction. Following transplantation, pancreatic islets lack a functional capillary system and need to be properly revascularized. Insufficient revascularization may severely affect the transport properties of the islet endothelial system, resulting in a dysfunctional islet graft.  相似文献   

19.
The pancreatic islets are one of the most vascularized organs of the body. This likely reflects the requirements of the organ for a rich supply of nutrients and oxygen to the tissue, as well as the need for rapid disposal of metabolites and secreted hormones. The islet endothelium is richly fenestrated to facilitate trans-endothelial transport of secreted hormones, has a unique expression of surface markers, and produces a number of vasoactive substances and growth factors. The islet endothelial cells play a critical role in the early phase of type 1 diabetes mellitus by increasing the expression of surface leucocyte-homing receptors, thereby enabling immune cells to enter the endocrine tissue and cause beta-cell destruction. Following transplantation, pancreatic islets lack a functional capillary system and need to be properly revascularized. Insufficient revascularization may severely affect the transport properties of the islet endothelial system, resulting in a dysfunctional islet graft.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号